首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cryptogein belongs to a new family of 10-kDa proteins called elicitins. Elicitins are necrotic and signaling proteins secreted by Phytophthora spp. responsible for the incompatible reaction and systemic hypersensitive-like necroses of diverse plant species leading to resistance against fungal or bacterial plant pathogens. The solution structure of beta cryptogein from Phytophthora cryptogea fungus was determined by using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. A set of 18 structures was calculated using 1360 NOE-derived distance restraints and 40 dihedral angle restraints obtained from 3JHNH alpha couplings. The RMS deviation from the mean structure is 0.87 +/- 0.14 A for backbone atoms and 1.34 +/- 0.14 A for all the non-hydrogen atoms of residues 2 to 98. The structure of beta cryptogein reveals a novel protein fold, with five helices and a double-stranded beta-sheet facing an omega-loop. One edge of the beta-sheet and the adjacent face of the omega-loop form a hydrophobic cavity. This cavity made of highly conserved residues represents a plausible binding site. Residue 13, which has been identified from directed mutagenesis and natural sequence comparison studies as a key amino acid involved in the differential control of necrosis, is surface exposed and could contribute to the binding to a ligand or a receptor. The solution structure is close to the X-ray structure, with slight differences lightly due to the crystal packing.  相似文献   

2.
Raphanus sativus Antifungal Protein 1 (Rs-AFP1) is a 51 amino acid residue plant defensin isolated from radish (Raphanus sativus L.) seeds. The three-dimensional structure in aqueous solution has been determined from two-dimensional 1H NMR data recorded at 500 MHz using the DIANA/REDAC calculation protocols. Experimental constraints consisted of 787 interproton distances extracted from NOE cross-peaks, 89 torsional constraints from 106 vicinal interproton coupling constants and 32 stereospecific assignments of prochiral protons. Further refinement by simulated annealing resulted in a set of 20 structures having pairwise root-mean-square differences of 1.35(+/- 0.35) A over the backbone heavy atoms and 2.11(+/- 0.46) A over all heavy atoms. The molecule adopts a compact globular fold comprising an alpha-helix from Asn18 till Leu28 and a triple-stranded beta-sheet (beta 1 = Lys2-Arg6, beta 2 = His33-Tyr38 and beta 3 = His43-Pro50). The central strand of this beta-sheet is connected by two disulfide bridges (Cys21-Cys45 and Cys25-Cys47) to the alpha-helix. The connection between beta-strand 2 and 3 is formed by a type VIa beta-turn. Even the loop (Pro7 to Asn17) between beta-strand 1 and the alpha-helix is relatively well defined. The structure of Raphanus sativus Antifungal Protein 1 features all the characteristics of the "cysteine stabilized alpha beta motif". A comparison of the complete structure and of the regions important for interaction with the fungal receptor according to a mutational study, is made with the structure of gamma-thionin, a plant defensin that has no antifungal activity. It is concluded that this interaction is both electrostatic and specific, and some possible scenarios for the mode of action are given.  相似文献   

3.
Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha3beta2 and alpha3beta4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr15]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr15]EpI solved at a resolution of 1.1 A using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo by direct methods. The [Tyr15]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr15]EpI, PnIA, PnIB, and MII, have an alpha4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr15]EpI has the same backbone fold as the other alpha4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr15]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr15]EpI and MII may have different binding modes for the same receptor subtype.  相似文献   

4.
The nuclear magnetic resonance (NMR) structure of the 15 kDa pathogenesis-related protein P14a, which displays antifungicidal activity and is induced in tomato leaves as a response to pathogen infection, was determined using 15N/13C doubly labeled and unlabeled protein samples. In all, 2030 conformational constraints were collected as input for the distance geometry program DIANA. After energy-minimization with the program OPAL the 20 best conformers had an average root-mean-square deviation value relative to the mean coordinates of 0.88 A for the backbone atoms N, C(alpha) and C', and 1.30 A for all heavy atoms. P14a contains four alpha-helices (I to IV) comprising residues 4 to 17, 27 to 40, 64 to 72 and 93 to 98, a short 3(10)-helix of residues 73 to 75 directly following helix III, and a mixed, four-stranded beta-sheet with topology +3x, -2x, +1, containing the residues 24-25, 53 to 58, 104 to 111 and 117 to 124. These regular secondary structure elements form a novel, complex alpha + beta topology in which the alpha-helices I, III and IV and the 3(10)-helix are located above the plane defined by the beta-sheet, and the alpha-helix II lies below this plane. The alpha-helices and beta-strands are thus arranged in three stacked layers, which are stabilized by two distinct hydrophobic cores associated with the two layer interfaces, giving rise to an "alpha-beta-alpha sandwich". The three-dimensional structure of P14a provides initial leads for identification of the so far unknown active sites and the mode of action of the protein, which is of direct interest for the generation of transgenic plants with improved host defense properties.  相似文献   

5.
The structure of the 129-residue protein hen lysozyme has been determined in solution by two-dimensional 1H nuclear magnetic resonance methods. 1158 NOE distance restraints, and 68 phi and 24 chi 1 dihedral angle restraints were employed in conjunction with distance geometry and simulated annealing procedures. The overall C alpha root-mean-square deviation from the average for 16 calculated structures is 1.8(+/- 0.2) A, but excluding 14 residues in exposed disordered regions, this value reduces to 1.3(+/- 0.2) A. Regions of secondary structure, and the four alpha-helices in particular, are well defined (C alpha root-mean-square deviation 0.8(+/- 0.3) A for helices). The main-chain fold is closely similar to structures of the protein in the crystalline state. Furthermore, many of the internal side-chains are found in well-defined conformational states in the solution structures, and these correspond well with the conformational states found in the crystal. The general high level of definition of mainchain and many internal side-chains in the solution structures is reinforced by the results of an analysis of coupling constants and ring current shifts. Many side-chains on the surface, however, are highly disordered amongst the set of solution structures. In certain cases this disorder has been shown to be dynamic in origin by the examination of 3J alpha beta coupling constants.  相似文献   

6.
The three-dimensional solution structure of des-[Phe(B25)] human insulin has been determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics calculations. Thirty-five structures were calculated by distance geometry from 581 nuclear Overhauser enhancement-derived distance constraints, ten phi torsional angle restraints, the restraints from 16 helical hydrogen bonds, and three disulfide bridges. The distance geometry structures were optimized using simulated annealing and restrained energy minimization. The average root-mean-square (r.m.s.) deviation for the best 20 refined structures is 1.07 angstroms for the backbone and 1.92 angstroms for all atoms if the less well-defined N and C-terminal residues are excluded. The helical regions are more well defined, with r.m.s. deviations of 0.64 angstroms for the backbone and 1.51 angstroms for all atoms. It is found that the des-[Phe(B25)] insulin is a monomer under the applied conditions (4.6 to 4.7 mM, pH 3.0, 310 K), that the overall secondary and tertiary structures of the monomers in the 2Zn crystal hexamer of native insulin are preserved, and that the conformation-averaged NMR solution structure is close to the structure of molecule 1 in the hexamer. The structure reveals that the lost ability of des-[Phe(B25)] insulin to self-associate is caused by a conformational change of the C-terminal region of the B-chain, which results in an intra-molecular hydrophobic interaction between Pro(B28) and the hydrophobic region Leu(B11)-Leu(B15) of the B-chain alpha-helix. This interaction interferes with the inter-molecular hydrophobic interactions responsible for the dimerization of native insulin, depriving the mutant of the ability to dimerize. Further, the structure displays a series of features that may explain the high potency of the mutant on the basis of the current model for the insulin-receptor interaction. These features are: a change in conformation of the C-terminal region of the B-chain, the absence of strong hydrogen bonds between this region and the rest of the molecule, and a relatively easy accessibility to the Val(A3) residue.  相似文献   

7.
We have isolated a 16-amino acid peptide from the venom of the marine snail Conus magus which potently blocks nicotinic acetylcholine receptors (nAChRs) composed of alpha3beta2 subunits. This peptide, named alpha-conotoxin MII, was identified by electrophysiologically screening venom fractions against cloned nicotinic receptors expressed in Xenopus oocytes. The peptide's structure, which has been confirmed by mass spectrometry and total chemical synthesis, differs significantly from those of all previously isolated alpha-conotoxins. Disulfide bridging, however, is conserved. The toxin blocks the response to acetylcholine in oocytes expressing alpha3beta2 nAChRs with an IC50 of 0.5 nM and is 2-4 orders of magnitude less potent on other nAChR subunit combinations. We have recently reported the isolation and characterization of alpha-conotoxin ImI, which selectively targets homomeric alpha7 neuronal nAChRs. Yet other alpha-conotoxins selectively block the muscle subtype of nAChR. Thus, it is increasingly apparent that alpha-conotoxins represent a significant resource for ligands with which to probe structure-function relationships of various nAChR subtypes.  相似文献   

8.
BACKGROUND: Myotrophin is a 12.5 kDa protein that appears to have a key role in the initiation of cardiac hypertrophy, a central process in many heart diseases. Myotrophin primarily comprises ankyrin-like (ANK) repeats, the 33 amino acid motifs involved in a wide range of protein-protein interactions. As a first step in the structure-based search for cardiac hypertrophy antagonists and in order to gain insight into the molecular basis of action of the ubiquitous and multifunctional ANK repeat motif, we have determined the solution structure of myotrophin using multidimensional heteronuclear NMR spectroscopy. RESULTS: The myotrophin structure determination was based on 2786 experimental NMR restraints, and the precision of the coordinates for the final 45 simulated-annealing structures is 0.43 A for the backbone atoms and 0.87 A for all atoms. The structure of myotrophin is well defined and is ellipsoidal: approximately 46 A long and 21 A wide. The ANK repeats, which constitute the main part of the myotrophin structure, are characteristic of a hairpin-like protruding tip followed by a helix-turn-helix motif. The V-shaped helix-turn-helix of the ANK repeats stack sequentially in bundles and are stabilized by compact hydrophobic cores, whereas the protruding tips are less ordered. This arrangement is quite different to the continuous beta-sheet topology observed in the corresponding regions of another ANK protein, 53BP2, the structure of which was determined in complex with p53. CONCLUSIONS: The solution structure of myotrophin provides important insights into the structural and dynamic features of the ANK motif, and suggests that the protruding tips with highly variable sequences may be critical to facilitate diverse protein-protein recognition. The present structure also provides a molecular basis for the further functional characterization of myotrophin and the development of therapeutics for hypertrophy-related heart diseases.  相似文献   

9.
The 3D solution structure of alpha-cobratoxin, a neurotoxin purified from the Naja naja siamensis snake venom, has been determined by Nuclear Magnetic Resonance spectroscopy, in conjunction with distance geometry and restrained molecular dynamics, at pH 7.5. A total of 490 distance restraints were obtained from NOE intensities and 25 phi dihedral angle restraints deduced from J-coupling data. The generated structures are well defined with root mean square deviations from a geometrical mean structure of 0.107 +/- 0.036 nm for the backbone atoms and 0.128 +/- 0.073 nm for the side-chain atoms (considering residues 1 to 66 minus 26 to 35). A comparison between the generated structures at pH 7.5 and the mean NMR solution structure at pH 3.2 revealed that the 3D structure of alpha-cobratoxin is more compact at neutral pH. This major difference is mainly due to the pH-dependent conformational variations of three residues His18, Thr44 and Thr59.  相似文献   

10.
The crystal structure of the mouse major histocompatibility complex (MHC) class I molecule H-2Dd with an immunodominant peptide, designated P18-I10 (RGPGRAFVTI), from human immunodeficiency virus envelope glycoprotein 120 was determined at 3.2 A resolution. A novel orientation of the alpha3 domain of Dd relative to the alpha1/alpha2 domains results in significantly fewer contacts between alpha3 and beta2-microglobulin compared with other MHC class I proteins. Four out of ten peptide residues (P2 Gly, P3 Pro, P5 Arg and P10 Ile) are nearly completely buried in the Dd binding groove. This is consistent with previous findings that Dd exploits a four-residue binding motif comprising a glycine at P2, a proline at P3, a positively charged residue at P5, and a C-terminal hydrophobic residue at P9 or P10. The side-chain of P5 Arg is directed toward the floor of the predominantly hydrophobic binding groove where it forms two salt bridges and one hydrogen bond with Dd residue Asp77. The selection of glycine at P2 appears to be due to a narrowing of the B pocket, relative to that of other class I molecules, caused by Arg66 whose side-chain folds down into the binding cleft. Residue P3 Pro of P18-I10 occupies part of pocket D, which in Dd is partially split by a prominent hydrophobic ridge in the floor of the binding groove formed by Trp97 and Trp114. Residues P6 through P9 form a solvent-exposed bulge, with P7 Phe protruding the most from the binding groove and thereby probably constituting a major site of interaction with T cell receptors. A comparison of H-2Dd/P18-I10 with other MHC class I/peptide complexes of known structure provides insights into the possible basis for the specificity of the natural killer cell receptor Ly-49A for several related class I molecules.  相似文献   

11.
To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.  相似文献   

12.
The effects of lanthanum (La3+) were studied on muscle and neuronal nicotinic acetylcholine receptors (AChRs) expressed in Xenopus oocytes. La3+ exerts a dose-dependent positive modulation on alpha1 beta1 gamma8 muscle AChRs, whereas it modulates negatively either alpha2 beta2, alpha2 beta4 or alpha3 beta4 neuronal AChRs. Moreover, La3+ appears to accelerate the desensitization of neuronal receptors. In both muscle and neuronal AChRs, the respective potentiating or inhibiting effects of La3+ on the ACh-currents are voltage-independent, suggesting that La3+ is acting at a site located in the external domain of the receptor.  相似文献   

13.
Molecular models of IL-2delta2 and IL-2delta3, two alternative splice variants of human IL-2 without exon 2 and 3, respectively, are described. These alternative splice variants attract particular interest as potential competitive inhibitors of the cytokine. Tertiary structure of IL-2 consists of four-helix bundle including helices A, B, C and D and a beta-pleated sheet. Exon 2 encodes the A-B loop (Asn30-Lys49 residues) linking helices A and B running in one direction. Rotation of the helix A around putative centre during the construction of IL-2delta2 model have not produced any significant changes in the hydrophobic core of IL-2 molecule. However, a large hole was formed on the surface of IL-2delta2 molecule instead of A-B loop in IL-2 fold. A high affinity IL-2 receptor is formed by combination of alpha, beta, and gamma(c) chains. Comparison of the model of the receptor bound IL-2 with the model of IL-2delta2 has shown that their beta-chain binding sites have minimum differences as distinct from alpha and gamma(c) chain-binding sites. Exon 3 encodes Ala50-Lys97 fragment which forms helices B and C with their short connecting loop. Model IL-2delta3 consists of helices A and D and long linking loop. This loop was composed of A-B and C-D loops which run in opposite directions in IL-2 structure and contain beta-strands making a beta-pleated sheet. Conformation of the linking loop relatively to helices A and D was stabilized by creation of a disulphide bond between cysteines 105 and 125. In addition, the hydrophobic residues of beta-sheet interact with the hydrophobic surface of A-D helical complex and close the latter from contacts with solution. Comparison of the model of IL-2 bound to receptor with IL-2delta3 model has shown that absence of helices B and C in IL-2delta3 model results in insignificant conformational changes only in residues interacting with gamma(c) chain of the receptor. The beta/gamma(c) heterodimer is an intermediate affinity receptor of IL-2. Most likely, both IL-2delta2 and IL-2delta3 are naturally occurring IL-2 antagonists since they keep the ability of binding with an intermediate affinity receptor of this cytokine and fail to engage the alpha chain of its high affinity receptor.  相似文献   

14.
Metallothionein is a cysteine-rich metal-binding protein whose biosynthesis is closely regulated by the level of exposure of an organism to zinc, copper, cadmium, and other metal salts. The metallothionein from Callinectes sapidus is known to bind six divalent metal ions in two separate metal-binding clusters. Heteronuclear 1H-113Cd and homonuclear 1H-1H NMR correlation experiments have been used to establish that the two clusters reside in two distinct protein domains. The three-dimensional solution structure of the metallothionein has been determined using the distance and angle constraints derived from these two-dimensional NMR data sets and a distance geometry/simulated annealing protocol. There are no interdomain short distance (< or = 4.5 A) constraints observed in this protein, enabling the calculation of structures for the N-terminal, beta domain and the C-terminal, alpha domain separately. A total of 18 structures were obtained for each domain. The structures are based on a total of 364 experimental NMR restraints consisting of 277 approximate interproton distance restraints, 12 chi 1 and 51 phi angular restraints, and 24 metal-to-cysteine connectivities obtained from 1H-113Cd correlation experiments. The only element of regular secondary structure in either of the two domains is a short segment of helix in the C-terminal alpha domain between Lys42 and Thr48. The folding of the polypeptide backbone chain in each domain, however, gives rise to several type I beta turns. There are no type II beta turns.  相似文献   

15.
Heterodimeric class IA phosphoinositide 3-kinase (PI 3-kinase) plays a crucial role in a variety of cellular signalling events downstream of a number of cell-surface receptor tyrosine kinases. Activation of the enzyme is effected in part by the binding of two Src homology-2 domains (SH2) of the 85 kDa regulatory subunit to specific phosphotyrosine-containing peptide motifs within activated cytoplasmic receptor domains. The solution structure of the uncomplexed C-terminal SH2 (C-SH2) domain of the p85 alpha subunit of PI 3-kinase has been determined by means of multinuclear, double and triple-resonance NMR experiments and restrained molecular-dynamics simulated-annealing calculations. The solution structure clearly indicates that the uncomplexed C-SH2 domain conforms to the consensus polypeptide fold exhibited by other SH2 domains, with an additional short helical element at the N terminus. In particular, the C-SH2 structure is very similar to both the p85 alpha N-terminal SH2 domain (N-SH2) and the Src SH2 domain with a root mean square difference (rmsd) for 44 C alpha atoms of 1.09 and 0.89 A, respectively. The canonical BC, EF and BG loops are less well-defined by the experimental restraints and show greater variability in the ensemble of C-SH2 conformers. The lower level of definition in these regions may reflect the presence of conformational disorder, an interpretation supported by the absence or broadening of backbone and side-chain NMR resonances for some of these residues. NMR experiments were performed, where C-SH2 was titrated with phosphotyrosine-containing peptides corresponding to p85 alpha recognition sites in the cytoplasmic domain of the platelet-derived growth-factor receptor. The ligand-induced chemical-shift perturbations indicate the amino-acid residues in C-SH2 involved in peptide recognition follow the pattern predicted from homologous complexes. A series of C-SH2 mutants was generated and tested for phosphotyrosine peptide binding by surface plasmon resonance. Mutation of the invariant Arg36 (beta B5) to Met completely abolishes phosphopeptide binding. Mutation of each of Ser38, Ser39 or Lys40 in the BC loop to Ala reduces the affinity of C-SH2 for a cognate phosphopeptide, as does mutation of His93 (BG5) to Asn. These effects are consistent with the involvement of the BC loop and BG loops regions in ligation of phosphopeptide ligands. Mutation of Cys57 (beta D5) in C-SH2 to Ile, the corresponding residue type in the p85 alpha N-SH2 domain, results in a change in peptide binding selectivity of C-SH2 towards that demonstrated by p85 alpha N-SH2. This pattern of p85 alpha phosphopeptide binding specificity is interpreted in terms of a model of the p85 alpha/PDGF-receptor interaction.  相似文献   

16.
Through a study of cloned nicotinic receptors expressed in Xenopus oocytes, we provide evidence that alpha-conotoxin ImI, a peptide marine snail toxin that induces seizures in rodents, selectively blocks subtypes of nicotinic acetylcholine receptors. alpha-Conotoxin ImI blocks homomeric alpha 7 nicotinic receptors with the highest apparent affinity and homomeric alpha 9 receptors with 8-fold lower affinity. This toxin has no effect on receptors composed of alpha 2 beta 2, alpha 3 beta 2, alpha 4 beta 2, alpha 2 beta 4, alpha 3 beta 4, or alpha 4 beta 4 subunit combinations. In contrast to alpha-bungarotoxin, which has high affinity for alpha 7, alpha 9, and alpha 1 beta 1 gamma delta receptors, alpha-conotoxin ImI has low affinity for the muscle nAChR. Related Conus peptides, alpha-conotoxins MI and GI, exhibit a distinct specificity, strictly targeting the muscle subtype receptor but not alpha 7 or alpha 9 receptors. alpha-Conotoxins thus represent selective tools for the study of neuronal nicotinic acetylcholine receptors.  相似文献   

17.
The native solution structure and dynamics of chymotrypsin inhibitor 2 (CI2) have been studied using a long (5.3 ns) molecular dynamics (MD) simulation without any imposed restraints. The majority of the experimentally observed spin-spin coupling constants, short- and long-range nuclear Overhauser effect (NOE) cross peaks and the amide hydrogen exchange behavior were reproduced by the MD simulation. This good correspondence suggests that the major structural features of the protein during the simulation are representative of the true protein structure in solution. Two water molecules formed hydrogen bond bridges between beta2 and beta3, in agreement with X-ray crystallographic data and a recent reassessment of the solution structure using time-averaged NMR restraints during MD refinement. The active-site loop of the protein displayed the greatest structural changes and the highest mobility. When this loop region was excluded, the average Calpha r.m.s. deviation of the simulated solution structures from the crystal structure was approximately 1.5 Angstrom from 0.5 to 5.3 ns. There is structural heterogeneity in particular regions of the NMR-derived solution structures, which could be a result of imprecision or true internal motion. A study of the distribution of mobility through the protein allows us to distinguish between these two alternatives. In particular, deviations in the active-site loop appear to be a result of heightened mobility, which is also supported by good correspondence between calculated and experimental S2 N-H order parameters. On the other hand, other ill-defined regions of the NMR-derived structures are well defined in the simulation and are probably the result of a lack of structural restraints (i.e. NOEs), as opposed to reflecting the true mobility.  相似文献   

18.
kappa-Bungarotoxin, a kappa-neurotoxin derived from the venom of the banded Krait, Bungarus multicinctus, is a homodimeric protein composed of subunits of 66 amino acid residues containing five disulfide bonds. kappa-Bungarotoxin is a potent, selective, and slowly reversible antagonist of alpha3 beta2 neuronal nicotinic acetylcholine receptors. kappa-Bungarotoxin is structurally related to the alpha-neurotoxins, such as alpha-bungarotoxin derived from the same snake, which are monomeric in solution and which effectively antagonize muscle type receptors (alpha1 beta1 gamma delta) and the homopentameric neuronal type receptors (alpha7, alpha8, and alpha9). Like the kappa-neurotoxins, the long alpha-neurotoxins contain the same five conserved disulfide bonds, while the short alpha-neurotoxins only contain four of the five. Systematic removal of single disulfide bonds in kappa-bungarotoxin by site-specific mutagenesis reveals a differential role for each of the disulfide bonds. Removal of either of the two disulfides connecting elements of the carboxy terminal loop of this toxin (Cys 46-Cys 58 and Cys 59-Cys 64) interferes with the ability of the toxin to fold. In contrast, removal of each of the other three disulfides does not interfere with the general folding of the toxin and yields molecules with biological activity. In fact, when either C3-C21 or C14-C42 are removed individually, no loss in biological activity is seen. However, removing both produces a polypeptide chain which fails to fold properly. Removal of the C27-C31 disulfide only reduces the activity of the toxin 46.6-fold. This disulfide may play a role in specific interaction of the toxin with specific neuronal receptors.  相似文献   

19.
Staphylokinase, a 15.5 kDa protein from Staphylococcus aureus, is a plasminogen activator which is currently undergoing clinical trials for the therapy of myocardial infarction and peripheral thrombosis. The three-dimensional (3D) NMR solution structure has been determined by multidimensional heteronuclear NMR spectroscopy on uniformly 15N- and 15N,13C-labeled samples of staphylokinase. Structural constraints were obtained from 82 3JHNH alpha as well as 22 3JNH beta scalar coupling constants and 2345 NOE cross-peaks, derived from 15N-edited and 13C-edited 3D NOE spectra. NOE cross-peak assignments were confirmed by analysis of ?15N,13C?-edited and ?13C,13C?-edited 4D NOE spectra. The structure is presented as a family of 20 conformers which show an average rmsd of 1.02 +/- 0.15 A from the mean structure for the backbone atoms. The tertiary structure of staphylokinase shows a well-defined global structure consisting of a central 13-residue alpha-helix flanked by a two-stranded beta-sheet, both of which are located above a five-stranded beta-sheet. Two of the connecting loops exhibit a higher conformational heterogeneity. Overall, staphylokinase shows a strong asymmetry of hydrophilic and hydrophobic surfaces. The N-terminal sequence, including Lys10 which is the site of the initial proteolytic cleavage during activation of plasminogen, folds back onto the protein core, thereby shielding amino acids with functional importance in the plasminogen activation process. From a comparison of the structure with mutational studies, a binding region for plasminogen is proposed.  相似文献   

20.
Atropine, the classic muscarinic receptor antagonist, inhibits ion currents mediated by neuronal nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes. At the holding potential of -80 mV, 1 microM atropine inhibits 1 mM acetylcholine-induced inward currents mediated by rat alpha2beta2, alpha2beta4, alpha3beta2, alpha3beta4, alpha4beta2, alpha4beta4, and alpha7 nicotinic receptors by 12-56%. Inward currents induced with a low agonist concentration are equally inhibited (alpha3beta2, alpha3beta4), less inhibited (alpha2beta4, alpha7), or potentiated (alpha4beta2, alpha4beta4) by 1 microM atropine. Effects on the more sensitive alpha4beta4 nicotinic receptors were investigated in detail by systematic variation of acetylcholine and atropine concentrations and of membrane potential. At high agonist concentration, atropine inhibits alpha4beta4 nicotinic receptor-mediated ion current in a noncompetitive, voltage-dependent way with IC50 values of 655 nM at -80 mV and of 4.5 microM at -40 mV. At low agonist concentration, 1 microM atropine potentiates alpha4beta4 nicotinic receptor-mediated ion current. This potentiating effect is surmounted by high concentrations of acetylcholine, indicating a competitive interaction of atropine with the nicotinic receptor, and potentiation is also reversed at high atropine concentrations. Steady state effects of acetylcholine and atropine are accounted for by a model for combined receptor occupation and channel block, in which atropine acts on two distinct sites. The first site is associated with noncompetitive ion channel block. The second site is associated with competitive potentiation, which appears to occur when the agonist recognition sites of the receptor are occupied by acetylcholine and atropine. The apparent affinity of atropine for the agonist recognition sites of the alpha4beta4 nicotinic acetylcholine receptor is estimated to be 29.9 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号