首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ergonomics》2012,55(8):1027-1042
Abstract

This study investigated whether the anaerobic threshold (AnT) could be used to predict prolonged work capacity measured as cycling time to exhaustion (= endurance time) and which factors, in addition to relative exercise intensity, could explain variation in endurance time. Theoretical exercise intensities corresponding to certain endurance times were also calculated. The hyperbolic and exponential functions between cycling time and relative work rate (WR[%]), as well as between cyling time and relative oxygen uptake ([Vdot]O2[%]) were fitted to the pooled data (n = 45) of 17 subjects. The WR(%) and [Vdot]O2 (%) were expressed as a percentage of the subject's own AnT- and maximum -values. At WR corresponding to AnT (i.e., 70% of WRmax) an average subject could cycle 60 min according to both AnT- or maximum-related exponential function. When prediction was done for an endurance time of 4 h, the AnT-related exponential function gave 2·9%-units ( = 11 W or ~0·15 O21 · min?1) lower intensity level (51% of WRmax than the maximum-related function (54% of WRmax). The WR(%) alone explained 54% and 70% of the variation in endurance time of the AnT-related and maximum-related exponential functions, respectively. Muscle fibre composition and initial blood lactate or relative muscle glycogen depletion (change in muscle glycogen as percentage) increased significantly the explanatory power of these models. The differences between the observed and expected exercise times correlated with blood lactate accumulation (r = ?0·42; p < 0·01), muscle fibre composition (r = 0·33; p < 0·05) and relative muscle glycogen depletion (r = 0·67; p < 0·01). It was concluded that the capacity for prolonged work measured as cycling time to exhaustion can be estimated by AnT-related power output, and that the exponential function model is the most suitable. Prediction power of the model can be improved by multiple regressions including muscle fibre composition, initial blood lactate level and relative muscle glycogen depletion.  相似文献   

2.
《Ergonomics》2012,55(8):935-943
The effects upon heart rate and oxygen consumption of muscular exercises including simultaneous dynamic and static contractions were studied in three male subjects. Dynamic work consisted of walking at four speeds (0·56, 0·83, 1·11, 1·39 m s?) on a horizontal treadmill; static work consisted of pushing against, pulling and holding 6, 9, 12, 18 and 24?kg; combined work associated walking with each one of the forms of static work. Physiological load is expressed in terms of cardiac cost (ΔHR) and oxygen cost (Δ[Vdot]o2). The physiological cost of combined work increases with both the walking speed and the static load. For each parameter (HR and [Vdot]o2) the extra-cost of combined work has been determined by computing the difference between the cost of combined work and the sum of the costs observed during static and dynamic exercises separately performed. The paired t-test shows significant differences for all of the walking-pushing tests, but only for 8 pulling tests and 2 holding tests. Linear relationships are observed between the oxygen extra-cost and load when walking at 0·56 or 0·83 ms?1, with correlation coefficients statistically significant for pushing and pulling (p < 0·01) but not significant for holding tests. The present results show that, when the static work is combined with walking, the physiological response varies with the type of static work considered.  相似文献   

3.
《Ergonomics》2012,55(9):1877-1883
Twenty-six healthy women homemakers residing in the metropolitan city of Bombay were studied on a treadmill and a cycle ergometer to determine their aerobic capacity ([Vdot]O2 max) with a view to evaluating their cardio-respiratory fitness and ascertaining the job-demand-fitness-compatibility in household activities. The [Vdot]O2 max was found to be significantly higher in treadmill experiments, i.e. 15% in absolute value and 18% in relative value, as compared with that obtained by cycle ergometry (p < 0·001). A much higher difference was observed in values derived from the two methods on the same subjects (i.e. 28% in absolute value and 31% in relative value). Thus, the [Vdot]O2max obtained from treadmill experiments may be regarded as the maximal aerobic power or the highest oxygen uptake that an individual can attain during exercise, which in the sample of the present study was recorded as 1·901 min ?1 (33·9 ml kg ?1 min ?1). The findings also revealed that age and body weight have a direct influence on [Vdot]O2max, which was found to be significantly correlated, positively with the latter and negatively with the former (p<0·01 in both cases). The physiological job-demand of household activities seems to be compatible in relation to the [Vdot]O2max of the homemakers.  相似文献   

4.
《Ergonomics》2012,55(5):859-863
Abstract

In this study, the oxygen consumption ([Vdot]O2) of bicycling was measured at a fixed speed (40 km·h?1on level terrain, with normal and aerodynamic handlebars using a Douglas bag collection system. Eleven elite (USCF category I or 2) men cyclists age 24 to 40 years (X¯=28·5, SD±4·6) performed four consecutive (two with each bar in alternating order) steady state rides at 40 km· h?1over a 4 km flat course (same direction each trial). Expired gases were collected in a 1501 Douglas bag attached to a following vehicle during the last 45 s (approx. 0·5 km) of each trial. A repeated measures analysis of variance revealed a significant (p<0·02) handlebar effect. Specifically, [Vdot]O2was 2% lower under the aerodynamic handlebar treatment (X¯=4·26, SD±0·36 1 min?1when compared with that of the normal handlebar treatment (X¯=4·34, SD±0·35 1 min?1The results of this study demonstrate that the reported aerodynamic advantage of the aerodynamic handlebars produces a small but significant reduction in the [Vdot]O2of bicycling at 40 km·h?1  相似文献   

5.
《Ergonomics》2012,55(4):749-753
In order to assess the energy demands of manual clearing of snow, nine men did snow clearing work for 15 min with a shovel and a snow pusher. The depth of the snowcover was 400–600 mm representing a very heavy snowfall. Heart rate (HR), oxygen consumption ([Vdot]O2), pulmonary ventilation ( [Vdot]OE), respiratory exchange ratio (R), and rating of perceived exertion (RPE) were determined during the work tasks. HR, [Vdot]OE, R, and RPE were not significantly different between the shovel and snow pusher. HR averaged (± SD) 141 ± 20bmin-1 with the shovel, and 142 ± 19 beats-min-1 with the snow pusher. [Vdot]O2was 2·1 ± 0·41 min-1 (63 ± 12% [Vdot]O2max) in shovelling and 2·6 ± 0·51 min-1 (75 ± 14% [Vdot]O2max) in snow pushing (p< 0·001). In conclusion manual clearing of snow in conditions representing heavy snowfalls was found to be strenuous physical work, not suitable for persons with cardiac risk factors, but which may serve as a mode of physical training in healthy adults.  相似文献   

6.
《Ergonomics》2012,55(5):339-350
Monod and Scherrer (1965) showed that there was a linear relation between the maximal work and the maximal time over which the work was performed until the onset of local muscular exhaustion. This linear relation could be expressed by the equation: W lim =a+bT lim, where maximal work (Wlim) was thought to result from the use of an energy reserve (a) and an energy reconstitution whose maximal rate was (b) We have extended this concept to total body work (bicycle ergometer). Eight male and eight female college students underwent exercise tests at 400, 350, 300,275 and 300,250,200,175 W respectively, to the onset of fatigue. The regression analysis revealed that the linearity of individual plots was found to be 0-982<R 2<0 998 (p<0 01). Experimental results indicated that the maximal energy reconstitution rate (b) was correlated with the onset of anaerobic threshold (AT) as determined by the gas exchange method (r = 0 928, p <0 01). Furthermore, the sum of (a) and (b) (energy reserve and maximal rate of energy reconstitution) was found to be highly correlated with [Vdot]O2 max (r = 0 956, p < 0001) and the regression equation: [Vdot]O2max (1/min) = 0 00795 x [a + b] + 0 114 could be used to predict [Vdot]O2max with a SEE of 0-241/min.  相似文献   

7.
《Ergonomics》2012,55(2):227-235
The problem was to determine the optimal duration of endurance performance on the bicycle ergometer using max [Vdot]o2 as the criterion of validity. Max [Vdot]o2 was measured in 50 male college students using the, step-increment method (the initial resistance was 2·5 at 60 rpm on a bicycle ergometer, and was increased by 0·5 kg each two minutes until the subject would no longer turn.the ergometer, or when the rate fell to 40 to 50 rev/min).,In contrast, the endurance performance test was of the ‘ steady- pace ’ type in which all of the subjects began pedalling at the same initial rate of 69. pedal rpm at a work rate of 1656 kgm/min for 12 minutes. Although the rate of pedalling (and thus the Work rate) declined as fatigue developed, the friction load remained constant at124 kg throughout the test. There were 12 endurance scores for each individual, endurance being measured as the cumulated work done up to a particular minute. The 12 scores ranged from no decrement in the case of a few subjects with complete endurance to 24 percent in the subjeots with least endurance.

The validity correlations (i.e., the min-by-min correlations between, max [Vdot]o2and the 12 endurance scores), progressively increased to Y = 0·78 at minute 12. An empirical equation of the form, Y =C ? at, was used to fit. a smooth curve to the trend of the correlations so its' changing rate of curvature could be determined quantitatively. The rate of change was found to slow down considerably in the; later stages of performance, especially after minutes 7 or 8, where the change, was less than 0·04 correlation units.

It was concluded that max [Vdot]o2 does hot predict endurance performance effectively unless the performance is continued for a least 8 minutes under the conditions of the present experiment. With a,12 minute test, the validity is 96 percent of the asymptotic value, suggesting little further gains can be expected beyond 12 minutes.  相似文献   

8.
Carrying a casualty on a stretcher is a critical task conducted in a range of occupations. To ensure that personnel have the requisite physical capacity to conduct this task, two bilateral jerry can carries were used to predict individual performance in a four-person stretcher carry. Results demonstrated a bilateral 22-kg jerry can carry (R2 = 0.59) had superior predictive ability of stretcher carry performance than a bilateral 15-kg jerry can carry (R2 = 0.46). Pre- to post-carry changes in grip endurance (p > 0.05), back–leg isometric strength (p > 0.05) and leg power (p > 0.05) were not significantly different between carry tasks. There was no significant difference in heart rate (p > 0.05) and oxygen consumption (p > 0.05) between the stretcher carry and either jerry can carry. Thus, on the basis of performance correlations and physiological measures, the 22-kg jerry can carry is an appropriate predictive assessment of four-person stretcher carriage.

Practitioner Summary: This study investigated the ability of a jerry can carry to predict individual performance on a four-person stretcher carry. Performance correlations were substantiated with physiological measures to demonstrate similar physical requirements between task and test. These results can be used to set physical employment standards to assess stretcher carriage.  相似文献   


9.
《Ergonomics》2012,55(7):659-668
The physiological, subjective and biomechanical effects of altering flywheel weight and pedalling rate on a Quinton Model 870 bicycle ergometer were studied. Steel plates were added to the flywheel to increase its weight to 35·9 kg with a moment of inertia of 1·65 kg m2. A 1·5 kg spoked wheel with a moment of inertia of 0·1 kg m2 was used as the light flywheel. Eight subjects pedalled on two separate occasions for 6 min at 40, 50, 60, 70, 80 and 90 r.p.m. with workload levels representing 30 and 60% of their [Vdot]O2max with each flywheel. Force plate pedals were used to measure the total resultant force on the pedals (FR ) and the component perpendicular to the crank arm (FT). A force effectiveness index (FEI) was denned as the average of FT/FR over a crank cycle. The result showed no statistically significant change (p<0·05) in [Vdot]O2, heart rate and rating of perceived exertion of the FEI as a function of flywheel weight except for the [Vdot]O2 at 50 r.p.m. for the light workload. As the r.p.m. increased from 40 to 90 r.p.m., the FEI decreased from 0·5 to 0·35 with the heavy load and from 0·36 to 0·22 with the light load. Measured physiological, subjective and biomechanical indices did not change significantly with flywheel weight. Increasing the pedalling rate caused a significantly less effective application of forces to the crank arm with only a small change in [Vdot]O2.  相似文献   

10.
《Ergonomics》2012,55(9):1255-1260
Abstract

The purpose of this study was to investigate how altering surfboard volume (BV) affects energy expenditure during paddling. Twenty surfers paddled in a swim flume on five surfboards in random order twice. All surfboards varied only in thickness and ranged in BV from 28.4 to 37.4 L. Measurements of heart rate (HR), oxygen consumption (VO2), pitch angle, roll angle and paddling cadence were measured. VO2 and HR significantly decreased on thicker boards [VO2: r = ?0.984, p = 0.003; HR: r = ?0.972, p = 0.006]. There was also a significant decrease in pitch and roll angles on thicker boards [Pitch: r = ?0.995, p < 0.001; Roll: r = ?0.911, p = 0.031]. Results from this study suggest that increasing BV reduces the metabolic cost of paddling as a result of lower pitch and roll angles, thus providing mechanical evidence for increased paddling efficiency on surfboards with more volume.

Practioner Summary: This study investigated the impact of surfboard volume on energy expenditure during paddling. Results from this study suggest that increasing surfboard volume reduces the metabolic cost of paddling as a result of lower pitch and roll angles, thus providing mechanical evidence for increased paddling efficiency on surfboards with more volume.  相似文献   

11.
《Ergonomics》2012,55(2):267-277
Abstract

A recent study has shown the reproducibility of time to exhaustion (time limit: ttime) at the lowest velocity that elicits the maximal oxygen consumption (υ[vdot]O2 max). The same study found an inverse relationship between this time to exhaustion at υ[vdot]O2 max and υ[vdot]O2 max among 38 élite long-distance runners (Billat et al. 1994b). The purpose of the present study was to compare the time to exhaustion at the power output (or velocity) at [vdot]O2 max for different values of [vdot]O2 max, depending on the type of exercise and not only on the aerobic capacity. The time of exhaustion at υ[vdot]O2 max (tlim) has been measured among 41 élite (national level) sportsmen: 9 cyclists, 9 kayak paddlers, 9 swimmers and 14 runners using specific ergometers. Velocity or power at [vdot]O2 max ( υ[vdot]O2 max) was determined by continuous incremental testing. This protocol had steps of 2 min and increments of 50 W, 30 W, 0.05ms? and 2km? for cyclists, kayak paddlers, swimmers and runners, respectively. One week later, dim was determined under the same conditions. After a warm-up of 10 min at 60% of their υ[vdot]O2 max, subjects were concluded (in less than 45 s) to their υ[vdot]O2 max and then had to sustain it as long as possible until exhaustion. Mean values of υ[vdot]O2 max and dim were respectively equal to 419±49 W (tlim = 222 ± 91 s), 239±56W ( tlim = 376 ± 134 s), l 46±009ms?1 ( tlim = 287± 160s) and 22.4 ±0.8kmh?1 ( tlim = 321 ±84s), for cyclists, kayak paddlers, swimmers and runners. Time to exhaustion at υ[vdot]O2 max was only significantly different between cycling and kayaking (ANOVA test, p<0.05). Otherwise, υ[vdot]O2max (expressed in ml min?1 kg?1) was significantly different between all sports except between cycling and running (p < 0.05). In this study, time to exhaustion at υ[vdot]O2 max was also inversely related to υ[vdot]O2 max for die entire group of elite sportsmen (r= ?0.320, p<0.05, n = 41). The inverse relationship between υ[vdot]O2 max and dim at υ[vdot]O2 max has to be explained, it seems that dim depends on υ[vdot]O2 max regardless of the type of exercise undertaken.  相似文献   

12.
《Ergonomics》2012,55(5):762-769
Introducing valid physical employment tests requires identifying and developing a small number of practical tests that provide broad coverage of physical performance across the full range of job tasks. This study investigated discrete lifting performance across various platform heights reflective of common military lifting tasks. Sixteen Australian Army personnel performed a discrete lifting assessment to maximal lifting capacity (MLC) and maximal acceptable weight of lift (MAWL) at four platform heights between 1.30 and 1.70 m. There were strong correlations between platform height and normalised lifting performance for MLC (R2 = 0.76 ± 0.18, p < 0.05) and MAWL (R2 = 0.73 ± 0.21, p < 0.05). The developed relationship allowed prediction of lifting capacity at one platform height based on lifting capacity at any of the three other heights, with a standard error of < 4.5 kg and < 2.0 kg for MLC and MAWL, respectively.  相似文献   

13.
《Ergonomics》2012,55(12):2032-2039
When firefighters work in hot conditions, altered immune and inflammatory responses may increase the risk of a cardiac event. The present study aimed to establish the time course of such responses. Forty-two urban firefighters completed a repeat work protocol in a heat chamber (100 ± 5°C). Changes to leukocytes, platelets, TNFα, IL-6, IL-10, LPS and CRP were evaluated immediately post-work and also after 1 and 24 h of rest. Increases in core temperatures were associated with significant increases in leukocytes, platelets and TNFα directly following work. Further, platelets continued to increase at 1 h (+31.2 ± 31.3 × 109 l, p < 0.01) and remained elevated at 24 h (+15.9 ± 19.6 × 109 l, p < 0.01). Sustained increases in leukocytes and platelets may increase the risk of cardiac events in firefighters when performing repeat work tasks in the heat. This is particularly relevant during multi-day deployments following natural disasters.

Practitioner Summary: Firefighters regularly re-enter fire affected buildings or are redeployed to further operational tasks. Should work in the heat lead to sustained immune and inflammatory changes following extended rest periods, incident controllers should plan appropriate work/rest cycles to minimise these changes and any subsequent risks of cardiac events.  相似文献   

14.
The paper is devoted to a study of stability questions for linear infinite-dimensional discrete-time and continuous-time systems. The concepts of power stability and l p Instability for a linear discrete-time system x k+1 = Ax k (where x k ε X, X is a Banach space, A is linear and bounded) are introduced and studied. Relationships between these concepts and the inequality r(A) < 1, where r(A) denotes the spectral radius of A, are also given. The discrete-time results are used for a simple derivation of some well-known properties of exponentially stable and Lp-stable linear continuous-time systems described by [xdot](t) = Ax(t) (A generates here a strongly continuous semigroup of linear and bounded operators on X). Some remarks on norms related to stable systems are also included.  相似文献   

15.
《Ergonomics》2012,55(8):766-780
The purpose of this study was to quantify the metabolic demand of simulated shipboard fire-fighting procedures currently practised by men and women in the Royal Navy (RN) and to identify a minimum level of cardiovascular fitness commensurate with satisfactory performance. Thirty-four males (M) and 15 females (F) volunteered as subjects for this study (n = 49). Maximal oxygen uptake ([Vdot]O2max) and heart rate (fc max) of each subject was assessed during a standardized treadmill test. During the main trials, volunteers were randomly assigned to complete several 4-min simulated shipboard fire-fighting tasks (boundary cooling (BC), drum carry (DC), extinguisher carry (EC), hose run (HR), ladder climb (LC)), at a work rate that was endorsed as a minimum acceptable standard. Heart rate (fc) and oxygen uptake ([Vdot]O2) were recorded at 10-s intervals during rest, exercise and recovery. Participants completed all tasks within an allocated time with the exception of the DC task, where 11 subjects (all females) failed to maintain the endorsed work rate. The DC task elicited the highest (p< 0.01) group mean peak metabolic demand (PMD) in males (43 ml min-1 kg-1) and females (42 ml min-1 kg-1) who were able to maintain the endorsed work rate. The BC task elicited the lowest PMD (23 ml min-1 kg-1), whilst the remaining three tasks elicited a remarkably similar PMD of 38–39 ml min-1 kg-1. The human endurance limit while wearing a self-contained breathing apparatus (SCBA) dictates that RN personnel are only able to fire-fight for 20–30 min, while wearing a full fire-fighting ensemble (FFE) and performing a combination of the BC, HR and LC tasks, which have a group mean metabolic demand of 32.8 ml min-1 kg-1. Given that in healthy subjects fire-fighting can be sustained at a maximum work intensity of 80% [Vdot]O2max when wearing SCBA for this duration, it is recommended that all RN personnel achieve a [Vdot]O2max of 41 ml min-1 kg-1 as an absolute minimum standard. Subjects with a higher [Vdot]O2max than the above quoted minimum are able to complete the combination of tasks listed with greater metabolic efficiency and less fatigue.  相似文献   

16.
《Ergonomics》2012,55(10):911-920
To examine the effects of firefighting personal protective ensemble (PPE) and self-contained breathing apparatus (SCBA) on exercise performance, 12 males completed two randomly ordered, graded exercise treadmill tests (GXTPPE and GXTPT). Maximal oxygen consumption (VO2max) during GXTPPE was 17.3% lower than the GXTPT in regular exercise clothing (43.0 ± 5.7 vs. 52.4 ± 8.5 ml/kg per min, respectively). The lower VO2max during the PPE condition was significantly related (r = 0.81, p < 0.05) to attenuated peak ventilation (142.8 ± 18.0 vs. 167.1 ± 15.6 l/min), which was attributed to a significant reduction in tidal volume (2.6 ± 10.4 vs. 3.2 ± 0.4 l). Breathing frequency at peak exercise was unchanged (55 ± 7 vs. 53 ± 7 breaths/min). The results of this investigation demonstrate that PPE and the SCBA have a negative impact on VO2max. These factors must be considered when evaluating aerobic demands of fire suppression work and the fitness levels of firefighters.  相似文献   

17.
《Ergonomics》2012,55(8):895-902
Abstract

To determine the difference in the energy cost of walking and running in a lightweight athletic shoe and a heavier boot, fourteen male subjects (six trained and eight untrained) has their oxygen uptake ([Vdot]O2) measured while walking and running on a treadmill. They wore each type of footwear, athletic shoes of the subjects' choice (average weight per pair = 616 g) and leather military boots (average weight per pair = 1776g), at three walking speeds (4·0, 5·6 and 7·3 km hour?1) and three running speeds (8·9, 10·5 and 12·1 km hour?1). The trials for running were repeated at the same three speeds with the subjects wearing shoes and these shoes plus lead weights. The weight of the shoes plus the lead weights was equal to the weight of the subjects' boots. The [Vdot]O2values with boots were significantly (p < 0·05) higher (5·9?10·2%) at all speeds, except the slowest walk, 4·0 km hour?1Also, [Vdot]O2with shoes plus lead weights were significantly (p<0·05) higher than shoes alone. Weight alone appeared to account for 48-70% of the added energy cost of wearing boots. The relative energy cost ([Vdot]O2, ml kg?1?) of trained and untrained subjects were the same at all speeds. These data indicate that energy expenditure is increased by wearing boots. A large portion of this increase may be attributed to weight of footwear. In addition, the increased energy cost of locomotion with boots appears to place a limiting stress on untrained subjects.  相似文献   

18.
《Ergonomics》2012,55(10):1671-1681
The utility of cardiac and ventilatory predictors of metabolic rate derived under temperate and heated laboratory conditions was evaluated during three fire-fighting simulations (70-mm hose drag, Hazmat recovery, bushfire hose drag; N = 16 per simulation). The limits of agreement for cardiac (temperate: ? 0.54 to 1.77; heated: ? 1.39 to 0.80 l min? 1) and ventilatory surrogates (temperate: ? 0.19 to 1.27; heated: ? 0.26 to 1.16 l min? 1) revealed an over-estimation of oxygen consumption that exceeded the acceptable limits required by occupational physiologists (N = 25; ± 0.24 l min? 1). Although ventilatory predictions offered superior precision during low-intensity work (P < 0.05), a cardiac prediction was superior during more demanding work (P < 0.05). Deriving those equations under heated conditions failed to improve precision, with the exception of the cardiac surrogate during low-intensity work (P < 0.05). These observations imply that individualised prediction curves are necessary for valid estimations of metabolic demand in the field.  相似文献   

19.
This work reports the development and the characterization of a microthermoelectric generator (μTEG) based on planar technology using electrochemically deposited constantan and copper thermocouples on a micro machined silicon substrate with a SiO2/Si3N4/SiO2 thermally insulating membrane to create a thermal gradient. The μTEG has been designed and optimized by finite element simulation in order to exploit the different thermal conductivity of silicon and membrane in order to obtain the maximum temperature difference on the planar surface between the hot and cold junctions of the thermocouples. The temperature difference was dependent on the nitrogen (N2) flow velocity applied to the upper part of the device. The fabricated thermoelectric generator presented maximum output voltage and power of 118 mV/cm2 and of 1.1 μW/cm2, respectively, for a device with 180 thermocouples, 3 kΩ of internal resistance, and under a N2 flow velocity of 6 m/s. The maximum efficiency (performance) was 2 × 10?3 μW/cm2 K2.  相似文献   

20.
《Ergonomics》2012,55(10):1276-1286
The effect of different handle angles on work distribution during hand cycling was determined. Able-bodied subjects performed hand cycling at 20% of maximum power level (mean (SD) power level: 90.0 (25.8) W) at a cadence of 70 rpm using handle angles of ±30°, ±15° and 0°. The handle angle had a significant effect on work during the pull down (p < 0.001) and lift up (p = 0.005) sector, whereby the highest work was performed with handle angles of +30° and ?15° respectively. The cycle sector had a significant effect on work (p < 0.001) and significantly (p = 0.002) higher work was performed in the pull down sector (25% higher than mean work over one cycle) as compared to the lift up sector (30% lower than mean work over one cycle). Therefore, a fixed handle angle of +30° is suggested to be optimal for power generation. The results of this study help to optimise the handbike–user interface. A more pronated handle angle compared to the one conventionally used was found to improve the performance of hand cycling and thereby the mobility of disabled people.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号