首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Irwin CB  Radwin RG 《Ergonomics》2008,51(2):156-167
This study examines using force vectors measured using a directional strain gauge grip dynamometer for estimating finger flexor tendon tension. Fifty-three right-handed participants (25 males and 28 females) grasped varying-sized instrumented cylinders (2.54, 3.81, 5.08, 6.35 and 7.62 cm diameter) using a maximal voluntary power grip. The grip force vector magnitude and direction, referenced to the third metacarpal, was resolved by taking two orthogonal grip force measurements. A simple biomechanical model incorporating the flexor tendons was used to estimate long finger tendon tension during power grip. The flexor digitorum superficialis and the flexor digitorum profundus were assumed to create a moment about the metacarpal phalange (MCP) joint that equals and counteracts a moment around the MCP joint measured externally by the dynamometer. The model revealed that tendon tension increased by 130% from the smallest size handle to the largest, even though grip force magnitude decreased 36% for the same handles. The study demonstrates that grip force vectors may be useful for estimating internal hand forces.  相似文献   

2.
The aim of this study was to investigate the effect of grip span on isometric grip force and fatigue of the flexor digitorum superficialis (FDS) muscle during sustained voluntary contractions at 60-65% of the maximal voluntary contraction (MVC). Eighteen subjects performed isometric, submaximal gripping contractions using a grip dynamometer at four different grip span settings while the pronated forearm rested on a horizontal surface. Maximal absolute grip force and median power frequency of FDS surface electromyography (EMG) during the submaximal trials were analyzed. Fatigue of FDS, as inferred from EMG frequency shifts, did not change as a function of grip size. However, middle grip sizes allowed for greater absolute forces than the small or large size. When contractions are at 60-65% MVC and the muscle is allowed to fatigue, however, grip size may be less influential than when maximal absolute force is required.  相似文献   

3.
Gao F 《Ergonomics》2012,55(4):489-499
The objective of this study was to quantitatively investigate the modulation of power grip force under repeated elbow movement and its relation to muscle cocontraction and potential risk of developing cumulative trauma disorders (CTD). Thirteen right-handed participants without any neuromuscular disorders were recruited. Participants were instructed to hold a digital dynamometer in the hand with three levels of grip forces (20%, 40% and 60% of the maximum grip force) and perform repeated arm movement in the sagittal plane at three speeds (slow, self-paced and fast) with the upper arm voluntarily held by side by the participant. With the increase of motion rate and target force level, the grip force fluctuation, finger flexor muscle activities, elbow muscles cocontraction and apparent stiffness were significantly increased (p < 0.01). This study suggests that the power grip coupled with fast arm movement be avoided as much as possible in the workplace. PRACTITIONER SUMMARY: Power grip is usually accompanied with arm movement in workplaces and the increased physical demand might result in higher muscle activities and potentially higher risk of repetitive musculoskeletal injuries.  相似文献   

4.
《Ergonomics》2012,55(1):41-58
Prehensile grasp capability is typically quantified by pinch and grasp forces. This work was undertaken to develop a methodology to assess complex, multi-axis hand exertions through the measurement of forces and moments exerted by the hand along and about three orthogonal axes originating at the grip centre; termed an external wrench. Instrumentation consisting of a modified pinch/grip dynamometer affixed to a 6?df force cube was developed to simultaneously measure three forces, three moments and the pinch/grip force about the centre of the grip. Twenty right hand dominant manual workers (10 male and 10 female), free of hand or wrist disorders, completed a variety of maximal strength tasks. The randomized block design involved three separate grips?–?power grip, lateral pinch and pulp pinch. Randomized within each block were three non-concurrent repetitions of isolated maximal force and moment generations along and about the three principle orthogonal axes and a maximal grip force exertion. Trials were completed while standing, with the arm abducted and elbow flexed to 90° with a wrist posture near neutral. Where comparable protocols existed in the literature, forces and moments exerted were found to be of similar magnitude to those reported previously. Female and male grip strengths on a Jamar dynamometer were 302.6?N and 450.5?N, respectively. Moment exertions in a power grip (female and male) were 4.7 Nm and 8.1 Nm for pronator, 4.9 Nm and 8.0 Nm for supinator, 6.2 Nm and 10.3 Nm for radial deviator, 7.7 Nm and 13.0 Nm for ulnar deviator, 6.2 Nm and 8.2 Nm for extensor, and 7.1 Nm and 9.3 Nm for flexor moments. Correlations with and between maximal force and moment exertions were only moderate. This paper describes instrumentation that allows comprehensive characterization of prehensile force and moment capability.  相似文献   

5.
Greig M  Wells R 《Ergonomics》2004,47(1):41-58
Prehensile grasp capability is typically quantified by pinch and grasp forces. This work was undertaken to develop a methodology to assess complex, multi-axis hand exertions through the measurement of forces and moments exerted by the hand along and about three orthogonal axes originating at the grip centre; termed an external wrench. Instrumentation consisting of a modified pinch/grip dynamometer affixed to a 6 df force cube was developed to simultaneously measure three forces, three moments and the pinch/grip force about the centre of the grip. Twenty right hand dominant manual workers (10 male and 10 female), free of hand or wrist disorders, completed a variety of maximal strength tasks. The randomized block design involved three separate grips--power grip, lateral pinch and pulp pinch. Randomized within each block were three non-concurrent repetitions of isolated maximal force and moment generations along and about the three principle orthogonal axes and a maximal grip force exertion. Trials were completed while standing, with the arm abducted and elbow flexed to 90 degrees with a wrist posture near neutral. Where comparable protocols existed in the literature, forces and moments exerted were found to be of similar magnitude to those reported previously. Female and male grip strengths on a Jamar dynamometer were 302.6 N and 450.5 N, respectively. Moment exertions in a power grip (female and male) were 4.7 Nm and 8.1 Nm for pronator, 4.9 Nm and 8.0 Nm for supinator, 6.2 Nm and 10.3 Nm for radial deviator, 7.7 Nm and 13.0 Nm for ulnar deviator, 6.2 Nm and 8.2 Nm for extensor, and 7.1 Nm and 9.3 Nm for flexor moments. Correlations with and between maximal force and moment exertions were only moderate. This paper describes instrumentation that allows comprehensive characterization of prehensile force and moment capability.  相似文献   

6.
Laparoscopic techniques allow for less-invasive treatment of common surgical problems. Laparoscopic instruments are different from standard surgical instruments and generally incorporate a pistol-grip handle configuration with rings for the fingers. This handle configuration has been reported as being uncomfortable, leading to finger compression neuropathies in some cases. As an alternative, the surgeon can choose to grasp laparoscopic instruments using a more powerful palm grip during grasping motions. This study evaluates the hypothesis that the use of the palm grip requires less muscle tension than the finger-grip when grasping with laparoscopic instruments. Nine general surgeons used an Autosuture laparoscopic grasper with a ringed pistol-grip handle held in both a finger-in-ring (F) or palm (P) hand grip position to grasp and close two spring-loaded metal plates. The same task was performed with a surgical haemostat clamp (H) for comparison. Each subject performed the grasping task in a random sequence for the three instrument configurations at two grasping forces levels (0.7 and 4.2 N), and with the instrument at three angles to the subjects' sagittal plane (0 degree, 45 degrees and 90 degrees). Surface electromyographic (EMG) signals were acquired from the flexor carpi ulnaris (FCU), flexor digitorum profundus (FDP), flexor digitorum superficialis (FDS), extensor carpi ulnaris (ECU), extensor digitorum comunis (EDC) and the thenar compartment (TH). The peak root mean squared (RMS) EMG voltage was averaged for five repetitions at each instrument, force and angle condition. Statistical analysis was carried out by repeated measures ANOVA. The muscle EMG RMS amplitude while using the palm grip was decreased in the FDS, TH and EDC, was unchanged in the ECU and FCU, and was slightly higher in the FDP when compared with the finger grip. These differences were most prominent at 90 degrees to the sagittal plane where the subjects' wrists neared maximal flexion. It is concluded that the palm grip is more powerful than the finger grip when grasping with laparoscopic instruments, particularly at angles perpendicular to the surgeon's sagittal plane.  相似文献   

7.
《Ergonomics》2012,55(4):684-699
A matrix of miniature and flexible pressure sensors is proposed to measure the grip pressure distribution (GPD) at the hand-handle interface of a vibrating handle. The GPD was acquired under static and dynamic loads for various levels of grip forces and magnitudes of vibration at different discrete frequencies in the 20–1000 Hz range. The EMG of finger flexor muscles was acquired using the silver-silver chloride surface electrodes under different static and dynamic loads. The measured data was analysed to study the influence of grip force, and magnitude and frequency characteristics of handle vibration on: (i) the local concentration of forces at the hand-handle interface; and (ii) the electrical activity of the finger flexor muscles. The results of the study revealed high interface pressure near the tips of index and middle fingers, and base of the thumb under static grip conditions. This concentration of high pressure shifted towards the middle of the fingers under dynamic loads, irrespective of the grip force, excitation frequency, and acceleration levels. The electrical activity of the finger flexor muscles increased considerably with the grip force under static as well as dynamic loads. The electrical activity under dynamic loads was observed to be 1·5–6·0 times higher than that under the static loads.  相似文献   

8.
《Ergonomics》2012,55(10):1243-1259
The inherent difficulty of measuring forces on the hand in ergonomic workplace assessments has led to the need for equations to predict grip force. A family of equations was developed, and validated, for the prediction of grip force using forearm electromyography (six finger and wrist muscles) as well as posture of the wrist (flexed, neutral and extended) and forearm (pronated, neutral, supinated). Inclusion of muscle activity was necessary to explain over 85% of the grip force variance and was further improved with wrist posture but not forearm posture. Posture itself had little predictive power without muscle activity (<1%). Nominal wrist posture improved predictive power more than the measured wrist angle. Inclusion of baseline muscle activity, the activity required to simply hold the grip dynamometer, greatly improved grip force predictions, especially at low force levels. While the complete model using six muscles and posture was the most accurate, the detailed validation and error analysis revealed that equations based on fewer components often resulted in a negligible reduction in predictive strength. Error was typically less than 10% under 50% of maximal grip force and around 15% over 50% of maximal grip force. This study presents detailed error analyses to both improve upon previous studies and to allow an educated decision to be made on which muscles to monitor depending on expected force levels, costs and error deemed acceptable by the potential user.  相似文献   

9.
《Ergonomics》2012,55(11):1121-1130
Occupational exposure is typically assessed by measuring forces and body postures to infer muscular loading. Better understanding of workplace muscle activity levels would aid in indicating which muscles may be at risk for overexertion and injury. However, electromyography collection in the workplace is often not practical. Therefore, a set of equations was developed and validated using data from two separate days to predict forearm muscle activity (involving six wrist and finger muscles) from grip force and posture of the wrist (flexed, neutral and extended) and forearm (pronated, neutral, supinated). The error in predicting activation levels of each forearm muscle across the range of grip forces, using the first day data (root mean square error; RMSEmodel), ranged from 8.9% maximal voluntary electrical activation (MVE) (flexor carpi radialis) to 11% MVE (extensor digitorum communis). Grip force was the main contributor to predicting muscle activity levels, explaining over 70% of the variance in flexor activation levels and up to 60% in extensor activation levels, respectively. Inclusion of gender as a variable in the model improved estimates of flexor but not extensor activity. While posture itself explained minimal variance in activation without grip force (<10% MVE), wrist and forearm posture were required (with grip force) to explain over 70% of the variance of all six muscles. The validation process indicated good day-to-day reliability of each equation, with similar error for flexor muscle models but slightly higher error in the extensor models when predicting activity levels for the second day of data (RMSEvalid ranging from 8.9% to 12.7% MVE). Detailed error analysis during validation revealed that inclusion of posture in the model effectively decreased error at grip forces above 25% maximum, but was detrimental at very low grip forces. This study presents a potential new tool to estimate forearm muscle loading in the workplace using grip force and posture, as a surrogate to use of a complex biomechanical model.  相似文献   

10.
《Ergonomics》2012,55(3):288-301
The aims of the present study were: (1) to collect normative data of pinch and power grip strength with a newer digital dynamometer; (2) to study the ability of hand grip force matching using a hand dynamometer where the validity and reliability issues were studied; and (3) to study the relationship between hand grip force matching and muscle activities of three forearm and hand muscles. This study consisted of two experiments. One hundred and twenty subjects volunteered in the first experiment, where hand grip strength and hand force estimation data were collected. The second experiment had 14 volunteers, where muscle activities of the hand and forearm were collected during the tests of hand grip strength and hand force matching estimations. Results showed that the power grip and pinch grip strengths collected with a newer digital dynamometer were comparable to similar studies using older equipment. At the group level, the force matching method was largely accurate and consistent. Instructions to the subjects about force matching estimation were important to the accuracy and consistency of the estimated forces. Estimation in force matching might depend on perceptions of several major muscle activities.  相似文献   

11.
《Ergonomics》2012,55(8):1398-1409
Finger flexor tendinopathies and carpal tunnel syndrome are histologically characterised by non-inflammatory fibrosis of the subsynovial connective tissue (SSCT) in the carpal tunnel, which is indicative of excessive and repetitive shear forces between the finger flexor tendons and SSCT. We assessed flexor digitorum superficialis (FDS) tendon and adjacent SSCT displacements with colour Doppler ultrasound as 16 healthy participants completed long finger flexion/extension movements captured by a motion capture system. FDS tendon displacements fit a second-order regression model based on metacarpophalangeal and proximal interphalangeal joint flexion angles (R2 = 0.92 ± 0.01). SSCT displacements were 33.6 ± 1.7% smaller than FDS tendon displacements and also fit a second-order regression model (R2 = 0.89 ± 0.01). FDS tendon and SSCT displacement both correlated with finger joint thickness, enabling participant-specific anthropometric scaling. We propose the current regression models as an ergonomic method to determine relative displacements between the finger flexor tendons and SSCT.  相似文献   

12.
《Ergonomics》2012,55(10):1594-1605
The effect of grip activities on wrist flexion/extension strength was examined. Twelve healthy subjects performed maximum wrist flexion/extension exertions with one of five levels of simultaneous grip effort: minimum effort; preferred effort; 30%, 60% and 100% maximum voluntary contraction. As grip force increased from the minimum to the maximum effort, average wrist flexion strength increased 34% and average wrist extension strength decreased 10%. It appears that the finger flexor tendons on the volar aspect of the wrist act agonistically in wrist flexion and act antagonistically to wrist extension. When an object gripped by the hand is fragile or uncomfortable, the reduced finger flexor activity will limit wrist flexion strength. Gripping a slippery object that requires high grip effort will result in reduced wrist extension strength. Grip force should be controlled during measurement of wrist flexion or extension strength. When analysing a task that involves both grip and wrist exertions, use of grip/wrist strength values that were measured during grip exertions only, or wrist exertions only, may incorrectly estimate the true grip/wrist strength, as grip and wrist activities significantly interact with each other as demonstrated in this paper.  相似文献   

13.
《Ergonomics》2012,55(12):1841-1849
Objective: This paper describes the development and application of a novel multi-axis hand dynamometer for quantifying 2D grip force magnitude and direction in the flexion-extension plane of the fingers. Methods: A three-beam reconfigurable form dynamometer, containing two active beams for measuring orthogonal forces and moments regardless of point of force application, was designed, fabricated and tested. Maximum grip exertions were evaluated for 16 subjects gripping cylindrical handles varying in diameter. Results: Mean grip force magnitudes were 231 N (SD = 67.7 N), 236 N (72.9 N), 208 N (72.5 N) and 158 N (45.7 N) for 3.81 cm, 5.08 cm, 6.35 cm and 7.62 cm diameter handles, respectively. Grip force direction rotated clockwise and the centre of pressure moved upward along the handle as handle diameter increased. Conclusions: Given that the multi-axis dynamometer simultaneously measures planar grip force magnitude and direction, and centre of pressure along the handle, this novel sensor design provides more grip force characteristics than current sensor designs that would improve evaluation of grip characteristics and model-driven calculations of musculoskeletal forces from dynamometer data.  相似文献   

14.
The major goal of this investigation was to collect statistically-based anthropometry describing the kinematics of the human hand and to model this anthropometry as a function of external hand measurements, so that it may be predicted noninvasively. Joint centres were anatomically estimated as the centre of curvature of the head of the bone proximal to the given joint. Joint centres determined using Reuleaux's method for PIP and DIP were within 1.4 mm of this anatomical estimate. Models using bone length as the independent variable explain more than 97% of the variability in the anatomically estimated joint centre position along the mid-line of the bone. Models for estimating the lengths of the kinematic segments using external hand length as the independent variable account for between 49 and 99% of the variability in segment length. Models for estimating the axial location of the finger MCP and thumb CMC joints with respect to the distal wrist crease using external hand length as the independent variable account for between 82 and 96% of the variability in these locations. Models for estimating the radio-ulnar location of the finger MCP and thumb CMC joints with respect to the long axis of the third metacarpal using external hand breadth as the independent variable account for between 30 and 74% of the variability in these locations.  相似文献   

15.
Mogk JP  Keir PJ 《Ergonomics》2006,49(11):1121-1130
Occupational exposure is typically assessed by measuring forces and body postures to infer muscular loading. Better understanding of workplace muscle activity levels would aid in indicating which muscles may be at risk for overexertion and injury. However, electromyography collection in the workplace is often not practical. Therefore, a set of equations was developed and validated using data from two separate days to predict forearm muscle activity (involving six wrist and finger muscles) from grip force and posture of the wrist (flexed, neutral and extended) and forearm (pronated, neutral, supinated). The error in predicting activation levels of each forearm muscle across the range of grip forces, using the first day data (root mean square error; RMSEmodel), ranged from 8.9% maximal voluntary electrical activation (MVE) (flexor carpi radialis) to 11% MVE (extensor digitorum communis). Grip force was the main contributor to predicting muscle activity levels, explaining over 70% of the variance in flexor activation levels and up to 60% in extensor activation levels, respectively. Inclusion of gender as a variable in the model improved estimates of flexor but not extensor activity. While posture itself explained minimal variance in activation without grip force (< 10% MVE), wrist and forearm posture were required (with grip force) to explain over 70% of the variance of all six muscles. The validation process indicated good day-to-day reliability of each equation, with similar error for flexor muscle models but slightly higher error in the extensor models when predicting activity levels for the second day of data (RMSEvalid ranging from 8.9% to 12.7% MVE). Detailed error analysis during validation revealed that inclusion of posture in the model effectively decreased error at grip forces above 25% maximum, but was detrimental at very low grip forces. This study presents a potential new tool to estimate forearm muscle loading in the workplace using grip force and posture, as a surrogate to use of a complex biomechanical model.  相似文献   

16.
提出一种新的模式分类器,利用安置在拇长屈肌、指深屈肌和指伸肌上的3个电极所测得的肌电信号,实现了对3自由度假手手指运动的控制.该分类器采用小波变换和样本熵的方法构造特征矢量.经过由变学习速率算法和RP算法构建的集成3层前馈神经网络的分类,能够成功地分辨出拇指、食指和中指的弯曲与伸展运动,平均识别率可达96%以上.实验结果表明,该分类器为多自由度肌电假手的控制提供了一种有效的方法.  相似文献   

17.
Keir PJ  Mogk JP 《Ergonomics》2005,48(10):1243-1259
The inherent difficulty of measuring forces on the hand in ergonomic workplace assessments has led to the need for equations to predict grip force. A family of equations was developed, and validated, for the prediction of grip force using forearm electromyography (six finger and wrist muscles) as well as posture of the wrist (flexed, neutral and extended) and forearm (pronated, neutral, supinated). Inclusion of muscle activity was necessary to explain over 85% of the grip force variance and was further improved with wrist posture but not forearm posture. Posture itself had little predictive power without muscle activity (<1%). Nominal wrist posture improved predictive power more than the measured wrist angle. Inclusion of baseline muscle activity, the activity required to simply hold the grip dynamometer, greatly improved grip force predictions, especially at low force levels. While the complete model using six muscles and posture was the most accurate, the detailed validation and error analysis revealed that equations based on fewer components often resulted in a negligible reduction in predictive strength. Error was typically less than 10% under 50% of maximal grip force and around 15% over 50% of maximal grip force. This study presents detailed error analyses to both improve upon previous studies and to allow an educated decision to be made on which muscles to monitor depending on expected force levels, costs and error deemed acceptable by the potential user.  相似文献   

18.
The effect of grip activities on wrist flexion/extension strength was examined. Twelve healthy subjects performed maximum wrist flexion/extension exertions with one of five levels of simultaneous grip effort: minimum effort; preferred effort; 30%, 60% and 100% maximum voluntary contraction. As grip force increased from the minimum to the maximum effort, average wrist flexion strength increased 34% and average wrist extension strength decreased 10%. It appears that the finger flexor tendons on the volar aspect of the wrist act agonistically in wrist flexion and act antagonistically to wrist extension. When an object gripped by the hand is fragile or uncomfortable, the reduced finger flexor activity will limit wrist flexion strength. Gripping a slippery object that requires high grip effort will result in reduced wrist extension strength. Grip force should be controlled during measurement of wrist flexion or extension strength. When analysing a task that involves both grip and wrist exertions, use of grip/wrist strength values that were measured during grip exertions only, or wrist exertions only, may incorrectly estimate the true grip/wrist strength, as grip and wrist activities significantly interact with each other as demonstrated in this paper.  相似文献   

19.
Bao S  Silverstein B 《Ergonomics》2005,48(3):288-301
The aims of the present study were: (1) to collect normative data of pinch and power grip strength with a newer digital dynamometer; (2) to study the ability of hand grip force matching using a hand dynamometer where the validity and reliability issues were studied; and (3) to study the relationship between hand grip force matching and muscle activities of three forearm and hand muscles. This study consisted of two experiments. One hundred and twenty subjects volunteered in the first experiment, where hand grip strength and hand force estimation data were collected. The second experiment had 14 volunteers, where muscle activities of the hand and forearm were collected during the tests of hand grip strength and hand force matching estimations. Results showed that the power grip and pinch grip strengths collected with a newer digital dynamometer were comparable to similar studies using older equipment. At the group level, the force matching method was largely accurate and consistent. Instructions to the subjects about force matching estimation were important to the accuracy and consistency of the estimated forces. Estimation in force matching might depend on perceptions of several major muscle activities.  相似文献   

20.
《Ergonomics》2012,55(3):336-343
Direction of loading and performance of multiple tasks have been shown to elevate muscle activity in the upper extremity. The purpose of this study was to evaluate the effects of gripping on muscle activity and applied force during pushing and pulling tasks with three forearm postures. Twelve volunteers performed five hand-based tasks in supinated, neutral and pronated forearm postures with the elbow at 90° and upper arm vertical. All tasks were performed with the right (dominant) hand and included hand grip alone, push and pull with and without hand grip. Surface EMG from eight upper extremity muscles, hand grip force, tri-axial push and pull forces and wrist angles were recorded during the 10 s trials. The addition of a pull force to hand grip elevated activity in all forearm muscles (all p < 0.017). During all push with grip tasks, forearm extensor muscle activity tended to increase when compared with grip only while flexor activity tended to decrease. Forearm extensor muscle activity was higher with the forearm pronated compared with neutral and supinated postures during most isolated grip tasks and push or pull with grip tasks (all p < 0.017). When the grip dynamometer was rotated so that the push and pull forces could act to assist in creating grip force, forearm muscle activity generally decreased. These results provide strategies for reducing forearm muscle loading in the workplace.

Statement of Relevance: Tools and tasks designed to take advantage of coupling grip with push or pull actions may be beneficial in reducing stress and injury in the muscles of the forearm. These factors should be considered in assessing the workplace in terms of acute and cumulative loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号