首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Deep-level transient spectroscopy is used to study charge-carrier emission from the states of separate quantum dots in InAs/GaAs p-n heterostructures grown on (100)-and (311)A-oriented GaAs substrates in relation to the reverse-bias voltage U. It is established that the structures under consideration exhibit different bias-voltage dependences of the Stark shift for the energy levels of the quantum-dot states on the value of U.  相似文献   

2.
The results of studies of hole energy states in vertically coupled quantum dots in InAs-GaAs p-n heterostructures by deep-level transient spectroscopy are reported. Spectra were recorded at different reverse-bias voltages. Levels related to bonding and antibonding s and p states of vertically coupled quantum dots were revealed. The energies of these states significantly depend on an external electric field applied to a heterostructure. This dependence was attributed to the quantum-dimensional Stark effect for the hole states of vertically coupled quantum dots. In addition to this, it was found that the energy of thermal activation of carriers from vertically coupled quantum dots depends on the conditions of isochronous annealing that was carried out both with the reverse bias switched-on and switched-off and both in the presence and absence of illumination. These changes, as in the case of isolated quantum dots, are typical of a bistable electrostatic dipole formed by carriers, localized in a coupled quantum dot, and ionized lattice point defects. The built-in electric field of this dipole reduces the energy barrier for the carriers in the coupled quantum dot. The investigated structures with vertically coupled quantum dots were grown using molecular-beam epitaxy taking account of self-assembling effects.  相似文献   

3.
Deep level transient spectroscopy (DLTS) is used to study electron emission from the states in the system of vertically correlated InAs quantum dots in the p-n InAs/GaAs heterostructures, in relation to the thickness of the GaAs spacer between the two layers of InAs quantum dots and to the reverse-bias voltage. It is established that, with the 100 Å GaAs spacer, the InAs/GaAs heterostructure manifests itself as a system of uncoupled quantum dots. The DLTS spectra of such structures exhibit two peaks that are defined by the ground state and the excited state of an individual quantum dot, with energy levels slightly shifted (by 1–2 eV), due to the Stark effect. For the InAs/GaAs heterostructure with two layers of InAs quantum dots separated by the 40 Å GaAs spacer, it is found that the quantum dots are in the molecule-type phase. Hybridization of the electron states of two closely located quantum dots results in the splitting of the levels into bonding and antibonding levels corresponding to the electron ground states and excited states of the 1s +, 1s ?, 2p +, 2p ?, and 3d + types. These states manifest themselves as five peaks in the DLTS spectra. For these quantum states, a large Stark shift of energy levels (10–40 meV) and crossing of the dependences of the energy on the electric field are observed. The structures with vertically correlated quantum dots are grown by molecular beam epitaxy, with self-assembling effects.  相似文献   

4.
Electron and hole emission from states of a ten-layer system of tunneling-coupled vertically correlated InAs/GaAs quantum dots (QDs) is studied experimentally by capacitance—voltage measurements and deep-level transient spectroscopy. The thickness of GaAs interlayers separating sheets of InAs QDs was ≈3 nm, as determined from transmission electron microscope images. It is found that the periodic multimo-dal DLTS spectrum of this structure exhibits a pronounced linear shift as the reverse-bias voltage U r applied to the structure is varied. The observed behavior is a manifestation of the Wannier—Stark effect in the InAs/GaAs superlattice, where the presence of an external electric field leads to the suppression of coupling between the wave functions of electron states forming the miniband and to the appearance of a series of discrete levels called Wannier—Stark ladder states.  相似文献   

5.
Temperature dependences of resistance at 0.7 K<T<300 K, the Hall and Shubnikov-de Haas effects in magnetic fields of up to 40 T, photoluminescence (PL), and morphology of a heterointerface (using an atomicforce microscope) of short-period InAs/GaAs superlattices were investigated. The investigations were carried out for a region of subcritical and critical thickness Q=2.7 monolayers (ML) of InAs. Upon exceeding the critical thickness, the self-organized growth of InAs quantum dots (QDs) set in. The formation of QD layers upon exceeding the critical thickness of InAs Q=2.7 ML is accompanied by a transition of conductivity from metallic to hopping. It is found that at InAs layer thicknesses of Q=0.33 ML and Q=2.0 ML, the PL intensities and electron mobilities in the structures have clearly pronounced maxima. Anisotropy of conductivity, which depends on the thickness of the deposited InAs layers, was observed.  相似文献   

6.
The deposition of In x Ga1–x As with an indium content of 0.3–0.5 and an average thickness of 3–27 single layers on a GaAs wafer by metalorganic chemical vapor deposition (MOCVD) at low temperatures results in the appearance of thickness and composition modulations in the layers being formed. Such structures can be considered to be intermediate nanostructures between ideal quantum wells and quantum dots. Depending on the average thickness and composition of the layers, the wavelength of the photoluminescence peak for the hybrid InGaAs quantum well–dots nanostructures varies from 950 to 1100 nm. The optimal average In x Ga1–x As thicknesses and compositions at which the emission wavelength is the longest with a high quantum efficiency retained are determined.  相似文献   

7.
Electron emission from multilayer arrays of vertically coupled InAs quantum dots into the n-GaAs matrix in Schottky-barrier structures (electron concentration n ≈ 2 × 1016 cm?3) is studied by admittance spectroscopy. It is established that, in the temperature region below ~70 K, electron emission in a rate range of 3 × 104–3 × 106 s?1 proceeds via thermally activated tunneling through intermediate virtual states. As the number of layers in the quantum dot array increases from three to ten, a decrease in the electron emission rate is observed.  相似文献   

8.
We report on a study of lasers with an emission wavelength of about 1.5 μm and high temperature stability, synthesized on an InP (001) substrate. Self-organized InAs quantum dots capped with a thin GaAs layer are used as the active region of the laser. A quaternary InGaAsP solid solution with a band-gap width of 1.15 eV serves as the waveguide/matrix layer. A high characteristic temperature of the threshold current, T 0 = 205 K, is reached in the temperature range 20–50°C in ridge-waveguide laser diodes. A correlation between the values of T 0 and the band-gap width of the waveguide layers is found.  相似文献   

9.
It is shown that the ground state transition energy in quantum dots in heterostructures grown by atmospheric-pressure MOCVD can be tuned in the range covering both transparence windows of the optical fiber at wavelengths of 1.3 and 1.55 μm by varying the thickness and composition of the thin GaAs/InxGa1−x As double cladding layer. These structures also exhibit a red shift of the ground state transition energy of the InxGa1−x As quantum well (QW) as a result of the formation of a hybrid QW InxGa1−x As/InAs (wetting layer) between the quantum dots (QDs). The Schottky diodes based on these structures are characterized by an increased reverse current, which is attributed to thermally activated tunneling of electrons from the metal contact to QD levels. __________ Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 38, No. 4, 2004, pp. 448–454. Original Russian Text Copyright ? 2004 by Karpovich, Zvonkov, Levichev, Baidus, Tikhov, Filatov, Gorshkov, Ermakov.  相似文献   

10.
Multilayer InAs-GaAs structures with an array of vertically aligned InAs quantum dots in a GaAs matrix, grown by molecular-beam epitaxy, were investigated by crystal truncation rods and high-resolution x-ray diffractometry methods. It was shown that the formation of scattering objects such as vertically aligned quantum dots in the structures strongly influences the mechanism of diffraction scattering of x-rays and changes the spatial distribution of the diffracted radiation. This is explained by the appearance of additional long-range order in the lateral arrangement of the scattering objects in the periodic structures, by the curving of the crystallographic planes in the periodic part of the structure, and by the quasiperiodicity of the deformation profile due to the vertically coupled quantum dots. The observed spatial distribution of the diffracted intensity can be explained qualitatively on the basis of a new model where the scattering layers with quantum dots consist of defect-free, coherently coupled, InAs and GaAs clusters. Fiz. Tekh. Poluprovodn. 33, 1359–1368 (November 1999)  相似文献   

11.
A model for the explaining specific features of the electron transport in strong electric fields in the quantum-dot unipolar heterostructure transistor (AlGaAs/GaAs/InAs/GaAs/InAs) is presented. It is shown that the two-step shape of the output current-voltage characteristic I D (V D ) and the anomalous dependence of the drain current I D on the gate voltage V G are caused by the ionization of quantum dots in the strong electric field at the drain gate edge. The ionization of quantum dots sets in at the drain voltage V D that exceeds the VD1 value, at which the I D (V D ) dependence is saturated (the first step of the I-V characteristic). With the subsequent increase in V D , i.e., for V D >VD1, the I D (V D ) dependence has a second abrupt rise due to the ionization of quantum dots, and then, for V D =VD2>VD1, the current I D is saturated for the second time (the second step in the current-voltage characteristic). It is suggested to use this phenomenon for the determining the population of quantum dots with electrons. The model presented also describes the twice-repeated variation in the sign of transconductance g m =dI D /dV G as a function of V G .  相似文献   

12.
The modification produced in the structural and optical properties of vertically coupled In0.5Ga0.5As quantum dots in a GaAs matrix by increasing the number of deposited layers of quantum dots has been investigated. It was shown that the deposition of a sequence of In0.5Ga0.5As quantum-dot planes separated by narrow (of the order of the height of the quantum dots) GaAs layers gives rise to an interaction between neighboring vertically coupled quantum dots. This interaction shifts the photoluminescence line due to the recombination of nonequilibrium carriers via states of the quantum dots into the region of lower photon energies. Fiz. Tekh. Poluprovodn. 31, 851–854 (July 1997)  相似文献   

13.
The transition from two-dimensional (2D) pseudomorphic growth to the three-dimensional (3D) (nanoisland) growth in InxGa1?xAs/GaAs multilayer structures grown by molecular-beam epitaxy was investigated by atomic force microscopy, photoluminescence, and Raman scattering. The nominal In content x in InxGa1?xAs was varied from 0.20 to 0.50. The thicknesses of the deposited InxGa1?xAs and GaAs layers were 14 and 70 monolayers, respectively. It is shown that, at these thicknesses, the 2D-3D transition occurs at x ≥ 0.27. It is ascertained that the formation of quantum dots (nanoislands) does not follow the classical Stranski-Krastanov mechanism but is significantly modified by the processes of vertical segregation of In atoms and interdiffusion of Ga atoms. As a result, the InxGa1?xAs layer can be modeled by a 2D layer with a low In content (x < 0.20), which undergoes a transition into a thin layer containing nanoislands enriched with In (x > 0.60). For multilayer InxGa1?xAs structures, lateral alignment of quantum dots into chains oriented along the \([\overline 1 10]\) direction can be implemented and the homogeneity of the sizes of quantum dots can be improved.  相似文献   

14.
Self-assembled quantum dots (QDs) in double-layer InAs/GaAs structures are studied by resonant photoluminescence and photoluminescence excitation spectroscopy. A weakly correlated (50%) double-layer system with an array of vertically coupled QDs (asymmetric quantum-dot molecules) was formed in a structure consisting of the 1.8-monolayer-thick first and the 2.4-monolayer-thick second InAs layers separated by 50 monolayers of GaAs. The nature of discrete quantum states in this system was studied and resonances corresponding to vertically coupled QDs were clearly observed for the first time.  相似文献   

15.
Electron-microscopy studies of GaAs structures grown by the method of molecular-beam epitaxy and containing arrays of semiconductor InAs quantum dots and metallic As quantum dots are performed. An array of InAs quantum dots is formed using the Stranski-Krastanow mechanism and consists of five layers of vertically conjugated quantum dots divided by a 5-nm-thick GaAs spacer layer. The array of As quantum dots is formed in an As-enriched GaAs layer grown at a low temperature above an array of InAs quantum dots using postgrowth annealing at temperatures of 400–600°C for 15 min. It is found that, during the course of structure growth near the InAs quantum dots, misfit defects are formed; these defects are represented by 60° or edge dislocations located in the heterointerface plane of the semiconductor quantum dots and penetrating to the surface through a layer of “low-temperature” GaAs. The presence of such structural defects leads to the formation of As quantum dots in the vicinity of the middle of the InAs conjugated quantum dots beyond the layer of “low-temperature” GaAs.  相似文献   

16.
We present a study on the effects of quantum dot coverage on the properties of InAs dots embedded in GaAs and in metamorphic In0.15Ga0.85As confining layers grown by molecular beam epitaxy on GaAs substrates. We show that redshifted emission wavelengths exceeding 1.3 μm at room temperature were obtained by the combined use of InGaAs confining layers and high quantum dot coverage. The use of high InAs coverage, however, leads to detrimental effects on the optical and electrical properties of the structures. We relate such behaviour to the formation of extended structural defects originating from relaxed large-sized quantum dots that nucleate in accordance to thermodynamic equilibrium theories predicting the quantum dot ripening. The effect of the reduced lattice-mismatch of InGaAs metamorphic layers on quantum dot ripening is discussed in comparison with the InAs/GaAs system.  相似文献   

17.
The growth peculiarities of In0.8Ga0.2As quantum dots and their arrays on GaAs surface by metalorganic vapor-phase epitaxy are investigated. The bimodal size distribution of In0.8Ga0.2As quantum dots is established from the photoluminescence spectra recorded at different temperatures. The growth parameters were determined at which the stacking of 20 In0.8Ga0.2As quantum-dot layers in the active area of a GaAs solar cell makes it possible to enhance the photogenerated current by 0.97 and 0.77 mA/cm2 for space and terrestrial solar spectra, respectively, with the high quality of the p–n junction retained. The photogenerated current in a solar cell with quantum dots is higher than in the reference GaAs structure by ~1% with regard to nonradiative-recombination loss originating from stresses induced by the quantum-dot array.  相似文献   

18.
Features of the growth of InAs quantum dots in an Al0.35Ga0.65As matrix by molecular beam epitaxy at different substrate temperatures, deposition rates, and amounts of deposited InAs are studied. The optimum conditions for growing an array of low-density (≤2 × 1010 cm?2) small (height of no more than 4 nm) self-organized quantum dots are determined. The possibility of the formation of optically active InAs quantum dots emitting in the energy range 1.3–1.4 eV at a distance of no more than 10 nm from the coherent heterovalent GaAs/ZnSe interface is demonstrated. It is established that inserting an optically inactive 5-nm GaAs quantum well resonantly coupled with InAs quantum dots into the upper AlGaAs barrier layer enhances the photoluminescence efficiency of the quantum-dot array in hybrid heterostructures.  相似文献   

19.
The electroluminescence of InAs/InAsSbP and InAsSb/InAsSbP LED heterostructures grown on InAs substrates is studied in the temperature range T = 4.2–300 K. At low temperatures (T = 4.2–100 K), stimulated emission is observed for the InAs/InAsSbP and InAsSb/InAsSbP heterostructures with an optical cavity formed normal to the growth plane at wavelengths of, respectively, 3.03 and 3.55 μm. The emission becomes spontaneous at T > 70 K due to the resonant “switch-on” of the CHHS Auger recombination process in which the energy of a recombining electron–hole pair is transferred to a hole, with hole transition to the spin–orbit-split band. It remains spontaneous up to room temperature because of the influence exerted by other Auger processes. The results obtained show that InAs/InAs(Sb)/InAsSbP structures are promising for the fabrication of vertically emitting mid-IR lasers.  相似文献   

20.
Electron microscopy studies of GaAs-based structures grown by molecular beam epitaxy and containing arrays of semiconductor InAs quantum dots and metal As quantum dots are performed. The array of InAs quantum dots is formed by the Stranski-Krastanov mechanism and consists of vertically coupled pairs of quantum dots separated by a GaAs spacer 10 nm thick. To separate the arrays of semiconductor and metal quantum dots and to prevent diffusion-induced mixing, the array of InAs quantum dots is overgrown with an AlAs barrier layer 5 or 10 nm thick, after which a GaAs layer is grown at a comparatively low temperature (180°C). The array of As quantum dots is formed in an As-enriched layer of the low-temperature GaAs by means of post-growth annealing at 400–760°C for 15 min. It is established that the AlAs barrier layer has a surface profile corresponding to that of a subbarrier layer with InAs quantum dots. The presence of such a profile causes the formation of V-shaped structural defects upon subsequent overgrowth with the GaAs layer. Besides, it was obtained that AlAs layer is thinned over the InAs quantum dots tops. It is shown that the AlAs barrier layer in the regions between the InAs quantum dots effectively prevents the starting diffusion of excess As at annealing temperatures up to 600°C. However, the concentration of mechanical stresses and the reduced thickness of the AlAs barrier layer near the tops of the InAs quantum dots lead to local barrier breakthroughs and the diffusion of As quantum dots into the region of coupled pairs of InAs quantum dots at higher annealing temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号