首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dielectric properties of solution-gas interface-formed Fe(OH)3 thin-film capacitors (Al/Fe(OH)3/Al) of various thicknesses have been studied in the frequency range 10–106 Hz at various temperatures (300–443 K). Dielectric constant, ε, increases with increasing film thickness (d) and temperature (T) and decreases with increase of frequency (f). The loss factor (tan δ), showing pronounced minimum with frequency, increases with rise of temperature, and tan δmin shifts to a higher frequency. The large increase in dielectric constant towards low frequency region indicates the possibility of an interfacial polarization mechanism in this region.  相似文献   

2.
Large single crystals of an organic nonlinear optical (NLO) material, benzil, have been grown by employing an indigenously built Bridgman-Stockbarger crystal grwoth system. The dielectric constant (ε r), dielectric loss tangent (tanδ) and impedance (Z) of these crystals, monitored along the crystallographica-axis, as a function of frequency in the 100kHz-10MHz range, exhibit sharp resonance effects in the 100–300kHz region. These strong resonance effects are attributed to the piezoelectric nature of the crystal. The origin of the appearance of the sharp peaks in the frequency variation ofε r and tanδ is in response to the elastic resonances induced via the externally applied electric field. The resonance peak positions shift towards lower frequencies with increase in temperature as a consequence of the decrease in the stiffness coefficient (C 11) of the crystal.  相似文献   

3.
The dielectric constant (K), loss (tanδ) andac conductivity of a sepiolite sample have been measured as a function of frequency in the range 102-107 Hz and in the temperature region 30–400°C. Thedc conductivities of hot pressed pellets were measured in the temperature range 30–550°C.K and tanδ of these samples decrease with increasing frequency. Results of these measurements have been correlated with the structural transformation accompanying dehydration, making use ofdta, ir and x-ray data. The moderately large value of activation energy (∼ 2·2 eV) in the intrinsic range suggests that the conduction process is most probably associated with ions.  相似文献   

4.
Dielectric properties such as dielectric constant (ε′) and dielectric loss tangent (tan□δ) of mixed Mn-Zn-Er ferrites having the compositional formula Mn0.58Zn0.37Fe2.05−xErx04 (where itx = 0.2, 0.4, 0.6, 0.8 and 1.0) were measured at room temperature in the frequency range 1–13 MHz using a HP 4192A impedance analyser. Plots of dielectric constant (ε′) vs frequency show a normal dielectric behaviour of spinel ferrites. The frequency dependence of dielectric loss tangent (tan δ) was found to be abnormal, giving a peak at certain frequency for all mixed Mn-Zn-Er ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric constant and dielectric loss tangent. Plots of dielectric constant vs temperature have shown a transition near the Curie temperature for all the samples of Mn-Zn-Er ferrites. However, Mn0.58Zn0.37Er1.0Fe1.05O4 does not show a transition. On the basis of these results an explanation for the dielectric mechanism in Mn-Zn-Er ferrites is suggested.  相似文献   

5.
Results of dielectric and conduction properties of vacuum evaporated tellurium (Te) thin film capacitors (Al-Te-Al) have been reported in the frequency range 1–100 kHz at various temperatures (303–423 K). Loss factor (tanδ) which shows a maximum with frequency increases with rise of temperature and tanδ max shift towards high frequency region. The large values of capacitance and dielectric constant (ɛ′) in the low frequency region indicate the possibility of an interfacial polarization mechanism.I-V characteristics show ohmic, space charge limited (SCLC) and thermionic emission conduction mechanisms to operate at low, intermediate and high voltages respectively. Various transport parameters have been calculated. It has been observed that the Schottky type of conduction is predominant in the high field region and the Schottky barrier height has been determined. The Hall coefficient, Hall mobility and carrier concentration are also discussed.  相似文献   

6.
Dielectric properties of nanophase AgI are studied over the frequency range from 100 kHz to 3 MHz at different temperatures. The values ofε, tanδ andσ ac are considerably larger than those reported for crystalline pellets of AgI, but they show a similar trend in variation with frequency and temperature. The increase in these values are attributed to the defect structure of the nano-particles.  相似文献   

7.
Composites of epoxy resin having different amounts of graphite particles have been prepared by solution casting method. Temperature dependence of dielectric constant, tan δ and a.c. conductivity was measured in the frequency range, 1–20 kHz, temperature range, 40–180°C for 0.99, 1.96 and 2.91 wt% graphite filled and unfilled epoxy composites. It was observed that the dielectric constant, tanδ and a.c. conductivity increase with increasing temperature. Near the transition temperature the materials show anomalous behaviour for the observed properties. Peaks of dielectric constant, tan δ and a.c. conductivity were observed to shift towards lower temperature with increasing frequency. Clear relaxation (tan δ) peaks around 169°C were observed in epoxy resin, which shifted to lower temperature side on increasing the frequency. Addition of 2.91 wt% graphite shifted the tan δ peaks towards higher temperature side by creating hindrances to the rotation of polymer dipoles. Addition of 2–91 wt% graphite leads to an increased relaxation time τ of dipoles in polysulphide epoxy from 1.44 × 10−5− 3.92 × 10−5 (s) at 90°C by creating the hindrance to the rotation of dipoles.  相似文献   

8.
Dielectric constantɛ, loss tanδ and a.c. conductivityσ of LiF-B2O3: Ln3+ (where Ln=Ce, Pr, Nd and Tb) glasses are studied as functions of frequency (in the range 102–106 Hz) and temperature (range 30–200°C). The dielectric breakdown strength of these glasses was also determined at room temperature in an air medium. The rate of increase ofɛ and tanδ with temperature decreases with decrease in the ionic radius of RE3+ ion whereas the dielectric breakdown strength, the activation energy for a.c. conduction in the high temperature region decreases with increase in the ionic radius of RE3+ ion. An attempt has been made to explain the a.c. conduction in these glasses on the basis of quantum mechanical tunnelling (QMT) model.  相似文献   

9.
CaO–B2O3–SiO2 glass-ceramics were synthesized by sol–gel method, and the effect of Ca/Si ratio on the microstructures, electrical properties and mechanical characteristics of this ternary system was investigated. The results showed that the increase of CaO content is favorable for the crystallization of CaO–B2O3–SiO2 system and formation of the desired glass-ceramics. The bending strength of the sintered glass-ceramics increases with CaO content by increasing of crystalline phases. When the Ca/Si ratio increases, the dielectric constant (ε r) decreases and loss (tanδ) increases gradually. The thermal expansion coefficient (TEC) enhances by increasing CaO contents due to the formation of other crystal phases with large TEC value. The glass-ceramics exhibit low dielectric constant and loss (ε r < 4.7, tanδ < 5 × 10-4 at 1 MHz), high resistivity (ρ > 1012 Ω · cm), as well as excellent mechanical properties (σ ≈ 160 MPa, α ≈ 3.6 × 10−6/°C).  相似文献   

10.
The dielectric constant (K), loss (tanδ), and hence conductivity (σ) of SrTiO3 single crystals have been measured in the frequency region 102–107 Hz and in the temperature range 30°–350° C. Quenching, subjecting the crystals to high electric fields (a.c. or d.c.) and X-ray orγ-ray irradiation, or a combination of these treatments, is found to bring about interesting changes in these properties. An attempt is made to understand the results.  相似文献   

11.
BaTi4O9 film was prepared on Pt/Ti/SiO2/Si substrate by laser chemical vapor deposition. The microstructure and dielectric properties were investigated. The single-phase BaTi4O9 film with random orientation was obtained. The surface consisted of round and rectangular grains, and the cross-section was columnar microstructure. The deposition rate (R dep) was 135 μm h−1. The dielectric constant (ε r) and loss (tanδ) were 35 and 0.01, respectively, at 1 MHz. With increasing temperature, ε r increased and showed a broad peak around 736 K, which indicated there might be a phase transition.  相似文献   

12.
X-ray diffraction pattern and AFM results confirm the nanostructure of p-ZnGa2Se4/n-Si. The unit cell lattice parameters, the crystallite size L, the dislocation density δ, and the main internal strain ε were calculated. The temperature and frequency-dependent electrical characteristics of the Al/p-ZnGa2Se4/n-Si/Al heterojunction diode (HJD) have been investigated to determine the interface states which are responsible for the non-ideal behavior of the characteristics of the diode. The capacitance–voltage (CV), conductance–voltage (GV), and series resistance–voltage (R sV) characteristics of the diode have been analyzed in the frequency range of 5 kHz–1 MHz and temperature range of 303–423 K. The interfaces states of the diode were determined using conductance–voltage technique. The interface state density profile for the diode was obtained as a function of temperature and frequency. The values of the built-in potential V bi, the doping concentration N d and the barrier height φ b(C–V) of the diode were calculated at different temperatures and frequencies. Our experimental results revealed that both the series resistance and interface state density values must be taken into account in studying the impedance spectroscopy of HJD to stand up their performance for electronic applications characteristics.  相似文献   

13.
The dc conductivity and dielectric parameters of glassy system of a-Se70Te30−x Sn x (x = 0, 2, 4, 6, 8 and 10) glasses have been investigated. Frequency and temperature dependence of dielectric constants (ε′) and dielectric loss (ε′′) are studied in the frequency range 120–100 kHz and temperature range 300–390 K. Dielectric dispersion is observed when Tin (Sn) is incorporated to a-Se–Te system in the entire temperature range. These results explain that the dc conduction loss is dominated in the present system. From dc conductivity studies it is observed that the dc conductivity and activation energy increases with increasing tin concentration in the present system.  相似文献   

14.
Dielectric measurements of pure Nylon 11 in comparison with metal (Zn) filled Nylon 11 have been carried out using an impendence analyzer in the frequency range of 102–107 Hz and temperature range 20–120 °C. Two different concentrations (1% and 5% (w/w)) of metal (Zn) fillers were used. It was observed that at low frequencies and particularly at high temperature dielectric permittivity (ε′) for 1% Zn filled sample is more than that of pure Nylon 11 whereas ε′ for 5% Zn filler is less as compared to that for pure Nylon 11. But at very high frequencies dielectric permittivity (ε′) for pure Nylon 11 is less than Zn filled samples. Also it is found that for all frequencies and particularly at high temperature ε′′ as well as tan δ are maximum for pure Nylon 11 and decrease for filled Nylon 11 samples. The Cole–Cole arcs have also been plotted for these samples. Using these plots the static and instantaneous values of dielectric permittivity and orientation polarization parameter ‘S’ have been calculated.  相似文献   

15.
Some garnets collected from the Kothagudem area of Khammam district in Andhra Pradesh were characterized by chemical analysis. The results show the garnets to be of almandine (Fe+2 3 Al2Si3O12) pyrope (Mg3Al2Si3O12) group. Dielectric constant (ɛ) and dielectric loss (tanδ) were measured as a function of frequency and temperature in the frequency range of 100 Hz to 100 KHz and from room temperature to 400°C. The room temperature measurement was extended to 10 MHz, AC conductivity was calculated from the data on ε and tan δ. DC conductivity was also measured.  相似文献   

16.
Conducting polymeric nanocomposite containing Li–Ni–Sm–Fe–O spinel was synthesized by the chemical oxidizing of aniline in the presence of LiNi0.5Sm0.08Fe1.92O4 particles. The dielectric and electric modulus properties of the as-prepared samples were investigated over a frequency range from 106 to 109 Hz. The dielectric constant (ε′), dielectric loss (ε″) and dissipation factor (tan δ) for all samples presented relatively high values at low frequency and were found to decrease with the frequency. The values of ε′, ε″ and tan δ of the nanocomposite were lower than that of the pristine PANI. Electric modulus analysis had been carried out to understand the electrical relaxation process. The dielectric relaxation time for the nanocomposite became longer due to the introduction of LiNi0.5Sm0.08Fe1.92O4 particles lowering the crystallinity of PANI.  相似文献   

17.
Dielectric constant ε, loss tan δ, a.c. conductivity Σ and dielectric breakdown strength of NaF-B2O3 glasses doped with certain transition metal ions (viz. Cu2+, VO2+, Ti4+ and Mn4+) are studied in the frequency range 102-107 Hz and in the temperature range 30–250°C. The values of ε, tan δ, Σa.c. are found to be the highest for Cu2+ doped glasses and the lowest for Mn4+ doped glasses. Activation energy for a.c. conduction and the value of dielectric breakdown strength are found to be the lowest for Cu2+ doped glasses and the highest for Mn4+ doped glasses. With the help of infrared spectra, increase in the values of ε and tan δ of these glasses with frequency and temperature are identified with space charge polarization. An attempt has been made to explain a.c. conduction phenomenon on the basis of quantum mechanical tunneling model (QMT)/carrier barrier hopping model.  相似文献   

18.
A series of styrene–butadiene rubber (SBR) composites have been prepared with different weight ratios of polyacetylene based conducting carbon black (CCB) (0–90 phr). The SBR–CCB systems are characterized for dimensional stability which is enhanced by increasing the CCB loading because of enhancement in polymer-filler interaction. The electrical properties such as dielectric constant (εr), dissipation factor (tan δ) and dielectric loss (ε″) of the composites have been studied. The influence of different loading of CCB (0–90 phr), frequency of ac (100 Hz–30 MHz) and temperature (25–75 °C) on the electrical properties was studied. An increase in dielectric constant and tan δ of the SBR composites was observed with increase in CCB content and ac frequency. This is due to enhancement of filler–filler interaction and the increase in continuity of conducting phase. The surface morphology has been studied using scanning electron microscopy (SEM).  相似文献   

19.
Frequency and temperature dependence of dielectric constant (εr), dielectric loss (tanδ), ac conductivity (σac) and complex impedance spectroscopy studies on cured polyester matrix and sisal fibre-reinforced polyester composites (SFRPC) have been investigated in the frequency range from 180 Hz to 1 MHz and temperature range from room temperature to 200 °C. The experimental results showed that with the incorporation of sisal fibre, the values of εr, tanδ and σac are increased. It is also found that the values of εr and tanδ for both cured polyester matrix and SFRPC are decreased with increasing frequency, which indicates that the major contribution to the polarization may come from orientation polarization and interfacial polarization. The increasing value of εr with increasing temperature at a particular frequency is due to free motion of the dipole molecular chains within the cured polyester matrix and SFRPC at higher temperature.  相似文献   

20.
The effects of Mn added during processing on the dielectric properties and microstructure of the BaTiO3-based ceramic materials system were discussed. Experiments show that a proper content of Mn can significantly increase dielectric constant (ε) and reduce the dielectric loss (tanδ) in BaTiO3-based X7R ceramic materials. The results attribute to the reaction: . When the system doped with 0.046mol% MnCO3 was sintered at 1240 °C for 4 h, the ε, tanδ and TCC were 5800, 1.6%, 0 ± 10% at 1 KHz respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号