首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 95 毫秒
1.
Mesoporous carbon spheres with hierarchical foam-like pore structures have been synthesized by a dual-templating strategy using phenolic resol as a carbon source, Pluronic F127 and spherical silica mesocellular foams (Si-MCFs) as the soft and hard template, respectively. The results show that the morphology and mesostructure of the silica template are faithfully replicated. The obtained mesoporous carbon material with spherical diameter size of ca. 3–5 μm exhibits hierarchical pore sizes (from ca. 3.5 to 60 nm), high specific surface area (1320 m2/g) and large pore volume (3.5 cm3/g). The carbon surface contains plenty of oxygen-containing groups, resulting in hydrophilic property for an electrode material. In addition, Pluronic F127 plays an important role in the synthesis for maintaining the foam-like mesostructure of the silica templates and faithful replication of the spherical morphology. The electrochemical measurements show that the hierarchically mesoporous carbon spheres as an electrochemical double-layer capacitor (EDLC) electrode present a long cyclic life, excellent rate capability, and high specific capacitance as ca. 208 F/g at 0.5 A/g in (2.0 M) H2SO4 aqueous solution. Its specific capacitance can still remain ca. 146 F/g at a high loading current density of 30 A/g with the retention of ca. 70%. Furthermore, this material also exhibits excellent capacitive performance in (C2H5)4NBF4/propylene carbonate electrolyte, and its specific capacitance is 97 F/g at loading current density of 0.5 A/g.  相似文献   

2.
《Ceramics International》2017,43(5):4427-4433
Nitrogen and MnO co-doped hierarchical porous carbon monolith (N-MnO-HPCM) materials were synthesized through a facile one-pot hydrothermal method. The resulting N-MnO-HPCM materials had hierarchical porous structure, high BET surface area (606 m2/g), large pore volume (0.33 cm3/g), and contained evenly dispersed MnO nanoparticles of about 6 nm in the carbon matrix. Their electrochemical performances as electrodes for supercapacitors were investigated. N-MnO-HPCM material exhibited an excellent electrochemical performance with a specific capacitance of 261.7 F/g at a current density of 1 A/g. It also showed a good rate capability with 74% capacity retention at high current density (5 A/g), indicating its potential applications in supercapacitors.  相似文献   

3.
In flowable and conventional electrochemical capacitors, the energy capacity is largely determined by the electrode material. Spherical active material, with high specific surface area (SSA) represents a promising material candidate for film and flow capacitors. In this study, we synthesized highly porous carbon spheres (CSs) of submicrometer size to investigate their performance in film and suspension electrodes. In particular, we studied the effects of carbonization and activation temperatures on the electrochemical performance of the CSs. The CSs activated at optimum conditions demonstrated narrow pore size distribution (<3 nm) with high SSA (2900 m2/g) and high pore volume (1.3 cc/g), which represent significant improvement as compared to similar materials reported in literature. Electrochemical tests of CSs in 1 M H2SO4 solution showed a specific capacitance of 154 F/g for suspension electrode and 168 F/g for film electrode with excellent rate performance (capacitive behaviors up to 100 mV/s) and cycling performance (95% of initial capacitance after 5000 cycles). Moreover, in the film electrode configuration, CSs exhibited high rate performance (78 F/g at 1000 mV/s) and volumetric power density (9000 W/L) in organic electrolytes, along with high energy density (21.4 Wh/L) in ionic liquids.  相似文献   

4.
The nitrogen-doped hierarchically porous carbon monoliths (N-HPCMs) were successfully synthesized by using dicyandiamide (DCDA) as nitrogen source, phenolic resol as carbon precursor and mixed triblock copolymers as templates via a one-pot hydrothermal approach. The obtained carbon monoliths possess tunable mesopore size (4.3–11.4 nm), large surface area (552–660 m2/g), and high nitrogen content (up to 12.1 wt%). Ascribed to the nitrogen-doped frameworks and hierarchical porosity, N-HPCMs exhibit good electrochemical performance as the supercapacitor electrode with specific capacitance of 268.9 F/g (in 6 M KOH) at a current density of 1 A/g, and a 4.1 % loss of the specific capacitance after 5,000 charge–discharge cycles, indicating a long-term cycling stability. Such unique features make N-HPCMs promising electrode materials for high performance supercapacitors.  相似文献   

5.
A two-step direct and simple method for the preparation of a hierarchical porous carbon monolith with micropores, mesopores and macropores is described. The two stages give more flexibility in the preparation of a porous carbon monolith. In step I a macroporous interconnected carbon monolith is prepared by ultrasonic irradiation during sol-gel polycondensation. The effects of sol-gel temperature, catalyst concentration and ultrasonic power on the structure of the monolith are investigated. In step II, mesopores are induced in the monolith by Ca(NO3)2 impregnation followed by CO2 activation. The effect of activation temperature is also studied. A hierarchical interconnected carbon monolith with mean pore size diameter of 1.2 μm, BET surface area of 624 m2/g, mesopore volume of 0.38 cm3/g and micropore volume of 0.22 cm3/g has been obtained from Ca(NO3)2 impregnation of the macroporous carbon monolith followed by CO2 activation at 850 °C.  相似文献   

6.
Kaisheng Xia  Jinhua Jiang  Juan Hu 《Carbon》2008,46(13):1718-1726
Various porous carbons were prepared by CO2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO2 treatment on their pore structures were discussed. Compared to the pristine mesoporous carbons, the samples subjected to CO2 treatment exhibited remarkable improvement in textural properties. The electrochemical measurement in 6 M KOH electrolyte showed that CO2 activation leads to better capacitive performances. The carbon CS15A6, which was obtained after CO2 treatment for 6 h at 950 °C using CMK-3 as the precursor, showed the best electrochemical behavior with a specific gravimetric capacitance of 223 F/g and volumetric capacitance of 54 F/cm3 at a scan rate of 2 mV/s and 73% retained ratio at 50 mV/s. The good capacitive behavior of CS15A6 may be attributed to the hierarchical pore structure (abundant micropores and interconnected mesopores with the size of 3-4 nm), high surface area (2749 m2/g), large pore volume (2.09 cm3/g), as well as well-balanced microporosity and mesoporosity.  相似文献   

7.
Magnetically-separable hierarchically porous carbon monoliths with partially graphitized structures were synthesized through confinement self-assembly in polyurethane (PU) foam associated with a direct carbonization process from triblock copolymer F127, phenolic resol and ferric nitrate. It was observed that the magnetic Fe nanoparticles were embedded in the walls of graphitic porous carbon matrix, and the resulting materials exhibited hierarchically porous structure with macropores of 100–450 μm, mesopore size of 4.8 nm, BET surface area of 723 m2/g, pore volume of 0.46 cm3/g, and saturation magnetization of 3.1 emu/g. Using methylene blue as model dye pollutant in water, the carbon monolith materials showed high adsorption capacity of 190 mg/g, exhibiting excellent adsorption characteristics desirable for the application in adsorption of dyes and easy separation under an external magnetic field.  相似文献   

8.
A series of hierarchically porous carbons was synthesized by self-assembly of polymeric carbon precursors and block copolymer template in the presence of tetraethyl orthosilicate (TEOS) and colloidal silica under acidic conditions. Resorcinol and formaldehyde were used as carbon precursors, poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) triblock copolymer was employed as a soft template, and TEOS-generated silica and colloidal silica were used as hard templates. The carbon precursors were polymerized in hydrophilic domains of block copolymer, followed by carbonization and silica dissolution. This resulted in carbons possessing cylindrical (∼12 nm) and spherical (20 or 50 nm) mesopores created by thermal decomposition of the soft template and by the dissolution of colloidal silica, respectively; fine pores were also formed by the dissolution of the TEOS-generated silica (∼2 nm). A further increase in fine porosity was achieved by post-synthesis activation of the carbons with carbon dioxide and/or water vapor, which resulted in hierarchical carbons with a surface area and pore volume approaching 2800 m2/g and 6.0 cm3/g, respectively.  相似文献   

9.
Metal fluoride added carbon anodes treated by pre-electrolysis were investigated for electrolytic production of nitrogen trifluoride (NF3) in molten NH4F·KF·4HF at 100 °C. The conditions for pre-electrolysis were first optimized using a graphite sheet anode as a model anode. The formation of fluorine-graphite intercalation compounds (fluorine-GICs) with semi-covalent C–F bonds, (CxF)n, on the MgF2 and CaF2 added carbon anode surface was accelerated by pre-electrolysis at potentials less than 4.0 V. Critical current densities (CCD) on the MgF2 added carbon anodes pre-electrolyzed under various conditions were determined, and the highest CCD was 290 mA cm−2 obtained for that pre-electrolyzed at 3.5 V for 500 C cm−2. This anode was successfully used in the electrolysis at 100 mA cm−2 for 290 h and the maximum NF3 current efficiency was 55%. From these results, it was concluded that the metal fluoride added carbon anode treated by pre-electrolysis has a high potential for electrolytic production of NF3 at higher current density.  相似文献   

10.
A nano-LiFePO4/C composite has been directly synthesized from micrometer-sized Li2CO3, NH4H2PO4, and FeC2O4·2H2O by the lauric acid-assisted solid-state reaction method. The SEM and TEM observations demonstrate that the synthesized nano-LiFePO4/C composite has well-dispersed particles with a size of about 100–200 nm and an in situ carbon layer with thickness of about 2 nm. The prepared nano-LiFePO4/C composite has superior rate capability, delivering a discharge capacity of 141.2 mAh g−1 at 5 °C, 130.9 mAh g−1 at 10 C, 121.7 mAh g−1 at 20 °C, and 112.4 mAh g−1 at 30 °C. At −20 °C, this cathode material still exhibits good rate capability with a discharge capacity of 91.9 mAh g−1 at 1 °C. The nano-LiFePO4/C composite also shows excellent cycling ability with good capacity retention, up to 100 cycles at a high current density of 30 °C. Furthermore, the effect of lauric acid in the preparation of nano-LiFePO4/C composite was investigated by comparing it with that of citric acid. The SEM images reveal that the morphology of the LiFePO4/C composite transformed from the porous structure to fine particles as the molar ratio of lauric acid/citric acid increased.  相似文献   

11.
We report a simple and cost-effective synthesis of hierarchically porous structure composed of Birnessite-type manganese dioxide (MnO2) nanosheets on flexible carbon cloth (CC) via anodic electrodeposition technique. Petal-shaped MnO2, having sheet thickness of a few nm and typical width of 100 nm, with a strong adhesion on CC is observed. This hierarchically porous MnO2–CC hybrid structure dose exhibit not only excellent capacitance properties, such as up to 425 F g−1 in specific capacitance, but also high crack resistance owing to its efficient release of bending stress, as observed by cyclic voltammetry and galvanostatic charge/discharge measurements under different curvature of bending configurations. Furthermore, flexible supercapacitors based on this kind of MnO2 nanosheet/CC electrode showed significantly improved stability in capacitive performance over 3000 cycles under the bending test, which is highly promising for future applications in flexible energy storage device.  相似文献   

12.
Organic vapor adsorption isotherms are measured on in situ grown carbon nanotube (CNT) films using piezoelectric GaPO4 crystal microbalances as mass sensing substrates. The isotherms are Type IV and show adsorption/desorption hysteresis, consistent with a porous material. The measured porosity is 2%, a value surprisingly low given an over 90% void volume in the film estimated from density considerations. At low pressures (p/p0 < 0.25) the isotherm is well fit by the Freundlich model and at intermediate pressures (p/p0 = 0.1–0.4) by the Brunauer, Emmett, Teller (BET) model. Monte Carlo simulations show three consecutive adsorption processes: filling of the intratube micropores at low pressures, monolayer coverage of the CNT external surface at intermediate pressures, and capillary condensation in the intertube mesopores at high pressures. The simulation results validate the use of the BET model for surface area analysis in the experimental system. The average total accessible surface area is found to be 180 ± 100 mm2 and the specific surface area is estimated to be 45 ± 25 m2/g. Further engineering of the CNT film microstructure should lead to much higher surface areas.  相似文献   

13.
李贵贤  袁琦罡  宏飞  张峰博 《当代化工》2014,(11):2211-2214
以凹凸棒为原料,采用水热原位晶化法合成了NaY分子筛,然后采用模板法以制备得到的纳米级NaY分子筛为模板,麦芽糖为碳源,制备得到一种微孔模板炭材料。采用XRD、FESEM、N2吸附/脱附等手段对NaY分子筛和微孔模板炭材料的物理性能进行表征。测试结果表明,NaY分子筛的粒径小于100 nm,比表面积为487 m2/g;模板炭材料的比表面积为789.2 m2/g、总孔容为0.62 m3/g,平均孔径为1.5 nm。随后,采用恒电流充放电测试、循环伏安测试对模板炭材料的电化学性能进行测试。恒电流充放电测试表明,当电流密度为600 m A/g时,材料的比电容可达163.3 F/g,循环伏安测试中材料表现出了良好的循环伏安曲线的矩形特征,较好的说明了材料具有良好的倍率性能。  相似文献   

14.
A gas–liquid interfacial synthesis approach has been developed to prepare SnO2/graphene nanocomposite. The as-prepared nanocomposite was characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller measurements. Field emission scanning electron microscopy and transmission electron microscopy observation revealed the homogeneous distribution of SnO2 nanoparticles (2–6 nm in size) on graphene matrix. The electrochemical performances were evaluated by using coin-type cells versus metallic lithium. The SnO2/graphene nanocomposite prepared by the gas–liquid interface reaction exhibits a high reversible specific capacity of 1304 mAh g−1 at a current density of 100 mA g−1 and excellent rate capability, even at a high current density of 1000 mA g−1, the reversible capacity was still as high as 748 mAh g−1. The electrochemical test results show that the SnO2/graphene nanocomposite prepared by the gas–liquid interfacial synthesis approach is a promising anode material for lithium-ion batteries.  相似文献   

15.
The design of supported Co‐based Fischer–Tropsch (F–T) catalysts with suitable reducibility, dispersion, loading, and nanoparticle structure is necessary so that high catalytic activity and selectivity for C5+ hydrocarbons can be achieved. Herein, we report that pyrolyzing a Co‐metal–organic framework‐71 precursor can provide porous carbon‐supported Co catalysts with completely reduced, well‐dispersed face‐centered cubic (FCC) Co nanoparticles (~10 nm in average size). The catalysts can be further tailored dimensionally by doping with Si species, and the FCC Co nanoparticles can be partially transformed into hexagonal close‐packed Co via a Co2C intermediate. All the as‐prepared catalysts had extremely high Co site density (>3.5 × 10?4 mol/g‐cat.) because they had a high number of Co active sites and low mass. Aside from having high F–T activity and C5+ selectivity, with diesel fuels being the main constituents, they showed unprecedentedly high C5+ space time yields (up to 1.45 g/(g‐cat. h)) as compared to conventional Co catalysts. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2935–2944, 2017  相似文献   

16.
We demonstrate that an aerosol can gel. This gelation is then used for a one-step method to produce an ultralow density porous carbon material. This material is named an aerosol gel because it is made via gelation of particles in the aerosol phase. The carbon aerosol gels have high specific surface area (200–350 m 2 /g), an extremely low density (2.5–5.0 mg/cc) and a high electrical conductivity, properties similar to conventional aerogels. The primary particles of the carbon aerosol gels are highly crystalline with a narrow (002) graphitic X-ray diffraction peak. Key aspects to form a gel from an aerosol are large volume fraction, ca. 10 ?4 or greater, and small primary particle size, 50 nm or smaller, so that the gel time is fast compared to other characteristic times.  相似文献   

17.
Porous SiC with a hierarchical mesoporous structure is a promising material for high-performance catalytic systems because of its high thermal conductivity, high chemical inertness at high temperature, and oxidation resistance. Attempts to produce high-surface area hierarchical SiC have typically been made by using porous carbon as a template and reacting it with either Si or SiO2 at high temperature under inert atmosphere. Because the reaction mechanism with Si involves a carbon dissolution step, and the reaction with SiO2 is highly dependent on C-SiO2 dispersion, the porous structure of the carbon template is not maintained, and the reaction yields nonporous SiC. In this work, mesoporous SiC has been synthesized using a novel hard-template methodology. SiC was prepared from hierarchical (mesoporous) silica which served as a solid template. Carbon deposition was done by Carbon Vapor Deposition (CVD) using CH4 as carbon precursor, where different temperatures and reaction times were tested to optimize the carbon coating. The synthesized SiC retained 61 (118 m2/g) and 47% (0.3 cm3/g) of the BET surface area and the mesopore volume of the original SiO2, which is 10 times higher than the retention reported for other template methods used to produce high surface area SiC.  相似文献   

18.
Porous carbons with high surface area were successfully prepared from thermoplastic precursors, such as poly(vinyl alcohol) (PVA), hydroxyl propyl cellulose and poly(ethylene terephthalate), by the carbonization of a mixture with MgO at 900 °C in an inert atmosphere. After carbonization the MgO was dissolved out using a diluted sulfuric acid and the carbons formed were isolated. The mixing of the PVA carbon precursor with the MgO precursors (reagent grade MgO, magnesium acetate or citrate) was done either in powder form or in an aqueous solution. The BET surface area of the carbons obtained via solution mixing could reach a very high value, such as 2000 m2/g, without any activation process. The pore structure of the resultant carbons was found to depend strongly on the mixing method; the carbons prepared via solution mixing were rich in mesopores, but those produced via powder mixing were rich in micropores. The size of mesopores was found to be almost the same as that of the MgO particles, suggesting a way of controlling the mesopore size in the resultant carbons. Measurement of capacitance was carried out in 1 mol/L H2SO4 electrolyte. The porous carbon with a BET surface area of 1900 m2/g prepared at 900 °C through solution mixing of Mg acetate with PVA showed a fairly high EDLC capacitance, about 250 F/g with a current density of 20 mA/g and 210 F/g with 1000 mA/g. The rate performance was closely related to the mesoporous surface area.  相似文献   

19.
A simple and inexpensive method is described for preparing high thermal conductivity graphite foam by impregnating a coal tar pitch based mesophase pitch into a substrate polyurethane foam template. Mesophase pitch impregnated polyurethane foam was converted into graphite foam by several heat treatments in air as well as in an inert atmosphere. Scanning electron microscope images show the retention of an excellent open pore structure despite volume shrinkage of over 50%. The graphite foam prepared by this sacrificial template method is found to possess a thermal conductivity of 60 W/m K with a compressive strength in the range of 3.0–5.0 MPa. The X-ray diffraction pattern shows an interlayer spacing (d002) of 0.3388 nm at a heat treatment temperature of 2400 °C. Different concentrations of slurries of mesophase pitch in water were used in combination with substrate foams of different densities to prepare graphite foams of density in the range 0.23–0.58 g cm−3. The specific thermal conductivity of the carbon foam with a low density of 0.58 g cm−3 is found to be higher than that of copper metal traditionally used in thermal management applications.  相似文献   

20.
Thermal-shock KOH activation of brown coal (800 °C, KOH/coal ratio 1 g/g) was shown to produce nanoporous activated carbon with more developed surface area than thermally-programmed heating (SBET up to 1700 vs 1000 m2/g). Increasing the KOH/coal ratio (up to 1 g/g) in the activated mixture increases the total pore volume (0.14–1.0 cm3/g), the micropore volume (0.03–0.71 cm3/g), and also the volume of subnanometer pores (0.01–0.40 cm3/g). Thermal shock produces nanoporosity at lower KOH/coal ratios (0.5-1.0 g/g) than respective low-rate heating KOH activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号