首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Abstract

Factors affecting textures in non-hardenable aluminium alloys are considered on the basis of published results and some new experimental results. Emphasis is placed on conditions relevant to industrial scale rolling and annealing of sheet products. The most commonly observed texture components in these alloys are summarised, together with available evidence regarding their origins. Hot rolling conditions have a powerful effect on subsequent annealing textures, which is attributed to the microstructural state of the material before cold rolling. This can influence the relative frequency of different nucleation mechanisms. Heat treatment of the hot rolled band can also bring about marked changes in texture and earing for the same reason. The effect of cold rolling reduction on texture is complex and depends on the initial microstructure; increasing reduction promotes an increasingly heterogeneous substructure. The main impurity in these alloys is iron, which plays several different roles in controlling texture and earing level. Iron, both in solid solution and as coarse precipitates, can weaken the cube texture and promote 45° earing tendency. However, fine scale precipitation in the deformation substructure before recrystallisation may contribute to a strengthening of the cube texture. For high contents of iron and heavy rolling reductions, where continuous recrystallisation occurs, the rolling texture is retained or may even become strengthened. Influences of silicon, manganese, and magnesium are also discussed.

MST/1295  相似文献   

2.
Abstract

A quantitative study of variations in microstructure and texture evolution in the through thickness direction of industrially hot rolled AA 3004 aluminium alloy has been carried out. The microstructural features of the specimens were examined with the aid of the electron channelling contrast technique in conjunction with an image analysis system. The number of recrystallised grains and the size distributions of coarse and fine intermetallics were measured to evaluate the variation between surface and centre. Significant differences in the number of recrystallised grains and the average size of coarse intermetallics in the through thickness direction of the hotband were observed. After isothermal annealing of the hotband for various times the fine intermetallic area fraction increased and was higher at the centre than at the surface. Quantitative texture analysis was carried out on the specimens and various texture components estimated to characterise the through thickness texture evolution. The proportion of cube texture component was higher near the surface than at the centre and this difference increased after isothermal annealing. Since negligible change occurred in the cube content of the centre specimen, growth of cube grains was deduced to have taken place primarily near the surface region. These observations illustrate that mechanisms of cube texture formation, heterogeneous nucleation of precipitates causing retarded recrystallisation, and Zener drag are evidently applicable even to complex commercial alloys.

MST/1849  相似文献   

3.
Abstract

The microstructure and texture of three dilute aluminium alloys after hot deformation and annealing was assessed; In particular, the influence of deformation temperature, strain rate, and strain on the annealed texture was examined, as well as the effect of alloy composition. The microstructures of the commercially pure materials studied (Al, Al+1%Mn and Al+1%Mg) varied in the volume fraction of coarse intermetallic particles, the type of dispersoid present, and the level and type of solute in solid solution. Furthermore, the initial stages of recovery and recrystallisation were studied in detail for one of the alloys (commercially pure Al). It was found that the main recrystallisation texture component was the cube and its strength, as well as the recrystallised grain size, depended strongly on the deformation strain. The deformation strain rate and temperature, and the alloy composition also strongly influenced the grain size and cube texture strength. These results are discussed in the context of current theories for cube nucleation within cube bands in the hot deformed microstructure. The present work was carried out as part of a wider research programme, partially supported by the European Union (Brite/Euram funded), to develop micromechanical models to describe the evolution of microstructure and texture during hot deformation and annealing of aluminium alloys.

MST/3376  相似文献   

4.
Abstract

The hot band of a commercial continuous cast (CC) Al–Mg–Mn alloy was annealed at different temperatures ranging from room temperature to 510°C for 3 h. The evolution of microstructure and crystallographic texture was investigated during the annealing treatment. It was found that the recrystallised alloy exhibited a severely elongated grain structure and a texture that consisted of a new type of component ({113}〈110〉) and two fibre components (〈100〉//ND and 〈110〉//ND), the axes of which were along the normal direction of the rolling plane (ND) in 〈100〉 and 〈110〉 respectively. The 〈100〉//ND fibre was dominated by a ND rotated cube orientation {001}〈310〉, while the 〈110〉//ND fibre was mainly composed of Goss and P orientation ({011}〈566〉). The formation of the {113}〈110〉 texture and two fibre textures was likely to be attributed to the concurrent precipitation effect taking place upon heating in annealing treatment of the alloy.  相似文献   

5.
Abstract

The texture evolution in hot band and annealed hot bands of low alloyed ferritic stainless steel with about 11 wt-%Cr was experimentally investigated using quantitative texture analysis. While the hot band texture was composed of components of α fibre and in particular δ fibre, its microstructure was a banded structure of mostly relaxed martensite and retained ferrite. Both the texture and microstructure of the hot band was derived from partially recrystallised austenite. During single phase hot band annealing, there was a strong sharpening in the strength of the texture components of δ fibre by strain induced boundary migration of the retained ferrite and formation of fine carbide sheets leading to the persistence of ferrite banding. In contrast, two phase hot band annealing resulted in the formation of a nearly equiaxed duplex ferrite grain structure with an aggregate of precipitated carbides within the transformed ferrite grains and complete elimination of microstructural banding of the hot band, and also led to the occurrence of a texture memory phenomenon.  相似文献   

6.
Abstract

The evolution of microstructure and texture in industrially hot rolled AA 3004 aluminium alloy has been studied. Specimens were subjected to isothermal annealing treatments and the recrystallisation kinetics was determined via measurement of changes in hardness at surface and centre locations. Metallographic examination of specimens was performed using electron channelling contrast. With the aid of an image processor, the Mg2Si precipitate count and size distributions were obtained. A significant increase in the number of precipitates was observed to occur after the completion of recrystallisation. Quantitative texture analysis was performed on the tapered specimens to characterise the through thickness effect. The quantity of cube texture component was shown to be higher at the surface than at the centre location and decreased with increasing exit temperature of the hotband.

MST/1564  相似文献   

7.
Texture evolution and the distribution of Goss orientation in polycrystalline Fe–Ga alloy were investigated as a series of rolling and subsequent annealing processes were used to develop highly textured rolled sheet. A dramatic change from the random nature of the as-rolled and primary recrystallized texture is observed when careful control of atmosphere and temperature during anneal leads to development of a sharp Goss orientation over up to 98 % of the surface of a sample during secondary recrystallization. In this work, grain boundary properties in local areas surrounding Goss grains are investigated and the evolution of Goss orientation is traced through the different stages of alloy processing using electron backscatter diffraction analysis. To evaluate the evolution of grains with Goss orientation, {011} grains are selected and separated from other texture components at each processing step and statistical analysis used to correlate the structural inheritance chain of Goss-oriented grains. The four processing stages considered are the alloy after hot rolling, the as-rolled alloy (i.e., after subsequent warm and cold rolling), the alloy after an initial anneal during which primary recrystallization occurs, and the alloy after final anneals in which secondary recrystallization with abnormal grain growth occurs. Analysis of Goss grain orientation probability distribution functions after primary and secondary recrystallization convincingly demonstrates that the orientation of the abnormally grown Goss texture that develops during secondary recrystallization is determined by the orientation of Goss components that develop during the primary recrystallization stage of alloy processing.  相似文献   

8.
Abstract

The secondary processing of low carbon steel strip produced by twin roll casting was investigated to examine its effect on microstructural development and mechanical properties. The as cast microstructure is predominantly acicular ferrite with regions of bainitepearlite and polygonal ferrite. Deformation at temperatures below Ar1 produces a heterogeneous microstructure with regions of moderately deformed acicular ferrite adjacent to highly deformed regions containing shear bands. Cold rolled and warm rolled steels show similar behaviour to conventional hot band in that dynamic recovery during warm rolling results in sluggish recrystallisation and produces a coarse final grain size. However, the initial as cast microstructure recrystallises at a slower rate than conventional hot band and produces a weaker recrystallisation texture. This can be attributed to the heterogeneous microstructure of the as cast strip such that, after rolling, nucleation occurs within shear bands and more ill defined sites, which results in nucleation of randomly oriented grains thereby producing a weak final texture. It was found that austenitising the as cast strip followed by rolling in the vicinity of Ar3 produces a uniform distribution of equiaxed, ultrafine ferrite UFF grains throughout the thickness of the strip. The production of UFF by twin roll casting and subsequent rolling represents a simple processing route for the production of fine grained low carbon sheet steel products.  相似文献   

9.
In the present paper, the size and dispersion of precipitates in ferritic stainless steels have been varied by applying different hot rolling processes, the effect of which on the evolution of recrystallization textures was investigated. The precipitate characterization was observed and studied by transmission electron microscopy and the texture evolution processes were characterized by X-ray diffraction and electron backscattering diffraction. The results show that low temperature finish rolling can promote the formation of a large number of fine and dense TiC precipitates in hot band. These fine and dense precipitates can be inherited in the final sheet, and are beneficial to facilitating the nucleation of randomly oriented grains by promoting the formation of inhomogeneous cold rolled microstructure, strongly suppressing the growth of recrystallized grains by pinning grain boundary migration, thereby weakening the formation of γ-fiber recrystallization texture and deteriorating the formability of final sheet. By contrast, strong γ-fiber recrystallization texture is developed in the sample with sparsely distributed coarse precipitates. Therefore, the size and dispersion of precipitates formed in hot rolling have significant effects on the nucleation of randomly oriented grains and the growth of recrystallized grains during recrystallization annealing, which play important roles in controlling the γ-fiber recrystallization texture in ferritic stainless steels.  相似文献   

10.
The microstructure and crystallographic texture have been investigated in a Cu–45 at.%Ni alloy after heavy rolling and subsequent annealing at different temperatures. Cold-rolling to a von Mises strain of 5.7 produced a sample with an average boundary spacing along the normal direction of ~70 nm and a large fraction of high-angle boundaries (HABs), ~70 %. Annealing of this sample for 1 h at temperatures ≤450 °C causes structural coarsening, during which the fraction of HABs decreases. Annealing at higher temperatures results in pronounced discontinuous recrystallization accompanied by twinning. Large frequencies of twin boundaries contribute to high HAB fractions measured in the as-recrystallized condition. Cube-oriented grains demonstrate a size advantage compared to grains of other orientations, thus creating a strong cube texture in the recrystallized material. Further annealing of the recrystallized microstructure promotes grain growth, which leads to a significant strengthening of the cube texture and to a dramatic loss of HABs. After 1 h of annealing at 1000 °C the fraction of the cube texture reaches 99 % and the HAB fraction is 12 %.  相似文献   

11.
The evolution of microstructure and texture was investigated in a severely warm-rolled ultrafine pearlitic steel. The steel was 95% warm-rolled at 600°C and annealed at 700°C for different time intervals. The spheroidisation of cementite initiated after 30% reduction and completed beyond 70% reduction. The 95% warm-rolled steel showed elongated as well as ultrafine equiaxed ferrite grains. Texture inhomogeneities were evidenced by the presence of Goss component ({011} <100>) on the surface originating due to surface shear and diffuse texture at the interior. Formation of equiaxed microstructure after annealing through continuous recrystallisation resulted in the retention of the surface Goss component. However, the Goss component was destroyed beyond annealing for 180?minutes due to the abnormal growth of other grains.  相似文献   

12.
Abstract

The effect of discrete operations during thermomechanical processing on the earing behaviour of two aluminium alloys (AA 5052 and AA 5454) has been investigated. In the homogenized condition AA 5454 contained a fine dispersoid distribution while AA 5052 was dispersoidfree. It was found that for the dispersoid-containing material the hot-rolling process was less dominant. Nevertheless, for both alloys the earing quality could be adjusted by suitable modifications to hot-rolling, cold-reduction, and annealing cycles. Pole-figure analysis indicated differences in hot-rolled texture caused by variations in processing, which became more significant as the total hot reduction was increased.

MST/41  相似文献   

13.
Abstract

Two different primary annealing conditions (continuous heating and discontinuous heating) on conventional oriented silicon steel were employed, and the evolution of microstructure and Goss frequency, as well as orientations of Goss neighbourhood from recovery to secondary recrystallisation, was investigated by means of optical microscopy and advanced electron backscatter diffraction (EBSD) technique. It could be concluded that high Goss frequency before secondary recrystallisation possibly did not contribute to sharp Goss orientation, even excellent magnetic property and that no grains with less deviation from ideal Goss first began to grow. As for coincidence site lattice (CSL) grain boundary and high energy grain boundary theories, the latter can explain the development of Goss due to its high frequency compared with CSL boundary of low frequency.  相似文献   

14.
Abstract

Whereas much research has been carried out on the texture development of Fe–Si steels or low carbon steels, very little attention has been given to the texture formation and investigation of the underlying mechanisms in Fe–Cr steels. Ferritic stainless steels containing between 11 and 17%Cr establish an important group of alloys owing to their good mechanical behaviour and corrosion resistance. Various industrial problems, such as roping or optimisation of deep drawability, can be tackled by means of quantitative texture analysis. Therefore, fundamental aspects concerning the inhomogeneity of the hot and cold rolled band, the origin of Goss texture after annealing, and selective particle drag during recrystallisation of alloys with finely dispersed Nb and Ti carbonitrides have been discussed.

MST/1678  相似文献   

15.
Abstract

The changes in structure and substructure occurring during homogenisation and hot rolling of an Al–5Mg alloy (AA 5083) have been investigated. It is shown that a homogenisation treatment is beneficial and that the resulting structure can be related to processing parameters. The results suggest that the substructure morphology is dependent upon the total strain, but this has not been quantified. The development of texture was also studied and it is shown to be almost invariant with temperature, but strongly strain dependent. The anisotropy so produced yielded plastic strain ratios that were found to be strongly dependent upon the rotated copper texture intensity. The deep drawing behaviour of the hot rolled sheet was investigated by employing cupping tests and it is shown that a relationship exists between the earing value and the subgrain size.

MST/I086  相似文献   

16.
采用EBSD技术对不同退火工艺处理后的冷轧取向硅钢超薄带样品进行研究,分析退火样品的显微组织、织构与磁性能的关系,讨论母材性能对超薄带性能的影响。结果表明:冷轧超薄带的退火组织均匀、Goss取向度高以及母材磁性能优良均可有效提升磁性能;退火升温速率主要影响晶粒尺寸、Goss取向度及磁性能;再结晶的平均晶粒尺寸改变,会影响最终超薄带的磁感应强度及铁损;在900℃退火5 min以上会明显发生再结晶,10~30 min内退火的超薄带磁性能变化较小,退火15 min获得最佳磁性能。此外,在1000℃及1100℃下退火的时间均不宜超过10 min,否则会恶化磁性能。  相似文献   

17.
It is established that Cu-1.6 at % Fe alloy tapes obtained through cold rolling to 98.9% followed by recrystallization annealing possess a sharp cube texture, which opens prospects of using thin tapes of this alloy as substrates for second-generation high-temperature superconductors. The optimum regime of annealing is determined that allows an alloy with sharp biaxial texture containing more than 97% cubic grains to be obtained. The yield stress of a 90-μm-thick Cu-1.6 at % Fe alloy tape upon recrystallization annealing at 800°C for 1 h amounts to 78 MPa, which is about three times higher than the value for a pure copper tape with sharp cube texture.  相似文献   

18.
Abstract

Two phase Zr – 2.5 wt-%Nb is used as pressure tube material in water cooled and moderated reactors. The in service behaviour of this hcp zirconium based alloy is dependent on strong textures developed during thermomechanical processing. In the present study, the texture evolution during fabrication of this material, using a modified route, was investigated. Texture, evaluated by the orientation distribution function, was correlated to microstructure during various stages of processing. It was observed that a strong orientation fibre parallel to the working direction develops with hot working (extrusion). With subsequent cold working, the texture formed after extrusion alone becomes strengthened. This observation is attributed to the presence of a soft secondary phase (β) at the α-phase grain boundary. In contrast to the above, in the case of single phase Zircaloy 4, new components of texture are generated with cold deformation after hot extrusion, as a result of interaction between grains.  相似文献   

19.
Abstract

Since its invention by Goss in 1934, grain-oriented (GO) electrical steel has been widely used as a core material in transformers. GO exhibits a grain size of over several millimeters attained by secondary recrystallization during high-temperature final batch annealing. In addition to the unusually large grain size, the crystal direction in the rolling direction is aligned with <001>, which is the easy magnetization axis of α-iron. Secondary recrystallization is the phenomenon in which a certain very small number of {110}<001> (Goss) grains grow selectively (about one in 106 primary grains) at the expense of many other primary recrystallized grains. The question of why the Goss orientation is exclusively selected during secondary recrystallization has long been a main research subject in this field. The general criterion for secondary recrystallization is a small and uniform primary grain size, which is achieved through the inhibition of normal grain growth by fine precipitates called inhibitors. This paper describes several conceivable mechanisms of secondary recrystallization of Goss grains mainly based on the selective growth model.  相似文献   

20.
《Materials Science & Technology》2013,29(11-12):1376-1379
Abstract

A new hot strip rolling process is discussed which is capable of producing ultrafine, equiaxed ferrite grains (i.e. less than 2 µm)in the surface region of steel strip. Both microstructural and texture analysis of low carbon steel strip that has been rolled using this method are used to show that the ferrite forms by strain induced transformation. Analysis by electron backscatter diffraction (EBSD) indicates that a strong ferrite microtexture exists within the individual austenite grains in which the ferrite nucleates. The results from bulk X-ray texture analysis confirm that the ferrite forms as a result of transformation from austenite that has undergone heavy shearing during rolling, with nucleation occurring on the austenite substructure. In the centre region of the strip, a bainitic microstructure forms after rolling during air cooling. In the transition region between the surface and the centre of the strip, ferrite is shown to nucleate to form closely spaced parallel ‘rafts’ of ferrite grains traversing individual austenite grains. Again, EBSD is used to show that the ferrite located within these rafts is strongly textured, which, in combination with microstructural evidence, suggests that this ferrite nucleates along intragranular shear bands that form in the austenite in this region of the strip during rolling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号