首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Manganese-containing ferritic–pearlitic steels have been studied after intercritical annealing for various times at temperatures of 700 and 725°C, during which austenite formation occurred at ferrite grain boundaries. Light and electron optical microscopy, and scanning transmission electron microanalysis and microdiffraction were employed for the study, in which both microstructural development and manganese redistribution were examined in detail. It was observed that the formation of austenite is associated initially with a migration of ferrite grain boundaries. It is proposed that this boundary migration is induced by manganese diffusion along the boundaries, and that this in turn provides the mechanism for rapidly transporting manganese to the growing austenite. On this basis, we find that austenite formation in these steels is associated with manganese-rich migrated ferrite boundaries, and is not dependent on the presence of cementite particles for nucleation.

MST/467  相似文献   

2.
An investigation has been carried out on the effects of vanadium additions on the microstructure and hardness values of hyper-eutectoid pearlitic steels with carbon contents up to 1.15 wt.%, for a range of isothermal transformation conditions. As in the case of eutectoid steels with vanadium additions, the predominant carbide species at the grain boundaries is cementite, rather than vanadium carbide, even at the higher vanadium levels (0.2 wt.%). However, the extent of the pro-eutectoid grain boundary cementite network is progressively reduced as the vanadium content is increased, in spite of the hypereutectoid composition. According to SEM and TEM investigations, the morphology of the grain boundary carbide is less continuous in the higher vanadium alloys, and consequently less deleterious to mechanical properties. The microstructural investigation indicates that the cementite particles form independently at many different places on the grain boundary, consistent with vanadium addition increasing the driving force for nucleation. Vanadium additions also effectively decrease the austenite grain sizes. An increment in hardness values has been achieved because of vanadium additions, which has potential to improve other mechanical properties in hypereutectoid pearlitic steels, because of these modifications in microstructure.  相似文献   

3.
Abstract

Inclusion assisted microstructure control has been a key technology to improve the toughness of C–Mn and low alloy steel welds over the last two to three decades. The microstructure of weld metals and heat affected zones (HAZs) is known to be refined by different inclusions, which may act as nucleation sites for intragranular acicular ferrite and/or to pin austenite grains thereby preventing grain growth. In the present paper, the nature of acicular ferrite and the kinetics of intragranular ferrite transformations in both weld metals and the HAZ of steels are rationalised along with nucleation mechanisms. Acicular ferrite development is considered in terms of competitive nucleation and growth reactions at austenite grain boundary and intragranular inclusion nucleation sites. It is shown that compared to weld metals, it is difficult to shift the balance of ferrite nucleation from the austenite grain boundaries to the intragranular regions in the HAZ of particle dispersed steels because inclusion densities are lower and the surface area available for ferrite nucleation at the austenite grain boundaries tends to be greater than that of intragranular inclusions. The most consistent explanation of high nucleation potency in weld metals is provided by lattice matching between ferrite and the inclusion surface to reduce the interfacial energy opposing nucleation. In contrast, an increase in the thermodynamic driving force for nucleation through manganese depletion of the austenite matrix local to the inclusion tends to be the dominant nucleation mechanism in HAZs. It is demonstrated that these means of nucleation are not mutually exclusive but depend on the nature of the nucleating phase and the prevailing transformation conditions. Issues for further improvement of weldment toughness are discussed. It is argued that greater numbers of fine particles of a type that preferentially nucleate acicular ferrite are required in particle dispersed steels to oppose the austenite grain boundary ferrite transformation and promote high volume fractions of acicular ferrite and thereby toughness.  相似文献   

4.
Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been employed to examine the austenite to proeutectoid ferrite and ferrite/carbide reactions in two low-carbon (0.04 wt%) steels. It is demonstrated that proeutectoid ferrite (both polygonal and Widmanstätten) can partition the prior austenite grains into several smaller units or pools. It is also shown that prior to the initiation of the pearlite reaction, ferrite grain growth can occur. The pools of austenite exert a Zener-like drag force on the migrating ferrite grain boundaries. However, the ferrite boundaries can eventually break away and small pools of austenite become completely embedded in single proeutectoid ferrite grains. Subsequently, these small pools of austenite transform to discrete regions of cementite, together with epitaxial ferrite. Conversely, certain small pools remain in contact with the ferrite grain boundaries and it is considered that transformation of these latter pools will eventually lead to the formation of massive films of cementite at the ferrite grain boundaries. Larger pools of austenite prevent ferrite boundary breakaway, and these latter, austenitic regions eventually transform to pearlite.  相似文献   

5.
Abstract

Factors controlling the transition from acicular ferrite to bainite in Fe–Cr–C weld metals have been investigated. It appears that the presence of allotriomorphs of ferrite at austenite grain boundaries has the effect of suppressing the formation of bainitic sheaves. This in turn allows the acicular ferrite plates to develop on intragranular nucleation sites. A theoretical analysis indicates that bainitic transformation is prevented from developing at the allotriomorphic ferrite/austenite boundaries by the carbon concentration field present in the austenite at the allotriomorphic ferrite/austenite interface. This field does not homogenise within the residual austenite during the time scale of the experiments.

MST/1217  相似文献   

6.
The isothermal decomposition of austenite in two commercial low carbon (0.04 w/o) steels has been examined using scanning electron microscopy and transmission electron microscopy. Particular emphasis has been placed on analysing the pearlite reaction and the development of massive films of cementite at pro-eutectoid ferrite/pearlite interfaces. Similarly, grain boundary precipitation of cementite has been investigated. The results strongly support the contention that films of cementite at ferrite/pearlite interfaces form predominantly by a coarsening process. In addition, it is shown that grain boundary precipitation of cementite can occur from super-saturated ferrite or from the decomposition of austenite. Examination of the early stages of the pearlite reaction has provided evidence that multiple nucleation of cementite can be a necessary precursor to the development of a pearlite colony.  相似文献   

7.
The nanostructure and the carbon distribution in a pearlitic steel processed by torsion under high pressure was investigated by three-dimensional atom probe. In the early stage of deformation (shear strain of 62), off-stoichiometry cementite was analysed close to interphase boundaries and a strong segregation of carbon atoms along dislocation cell boundaries was observed in the ferrite. At a shear strain of 300, only few nanoscaled off-stoichiometry cementite particles remain and a nanoscaled equiaxed grain structure with a grain size of about 20 nm was revealed. 3D-AP data clearly point out a strong segregation of carbon atoms along grain boundaries. The influence of this carbon atom segregation on the nanostructure formation is discussed and a scenario accounting for the nanocrystallisation during severe plastic deformation is proposed.  相似文献   

8.
Abstract

Kinetics and microstructure of bainite transformation in Fe–(0·15 or 0·05)C–0·2Si–1·5Mn (mass%) alloys with Nb addition of 0·03 mass%. Bainite transformation occurs at temperatures below 873 K. At 853 K, transformation rapidly proceeds by formation of bainitic ferrite without carbide precipitation, but transformation stasis appears for a certain period in the Nb added alloys leaving untransformed austenite film between neighbouring bainitic ferrites. On the other band, the Nb free alloys do not show such a stasis until the transformation is completed. By further holding, the transformation in the Nb added alloy restarts by forming the mixture of dislocation free ferrite with cementite precipitation in the austenite films. In contrast, bainite transformation accompanying cementite precipitation occurs in both Nb free and Nb added alloys at 773 K, resulting in no difference in transformation kinetics. It is proposed that the incomplete transformation is caused by suppression of ferrite nucleation at interphase boundaries between pre-existing bainitic ferrite and austenite due to Nb segregation.  相似文献   

9.
Abstract

Austenite formation during a continuous heating in a low carbon niobium microalloyed steel with a pearlite and ferrite initial microstructure has been studied. Characteristic transformation temperatures, Ac 1, Ac θ and Ac 3 and the evolution of austenite formation have been determined by combining dilatometry and metallography in a range of heating rates from 0˙05 to 10 K s–1. It has been observed that nucleation and growth of austenite depends highly on the applied heating rate. At low heating rates (0˙05 K s–1) nucleation of austenite takes place both at pearlite nodules and at ferrite grain boundaries, while for higher heating rates (≥0˙5 K s–1), nucleation at grain boundaries is barely present compared to the nucleation at pearlite nodules. The heating rate also affects the austenite growth path and morphology and, thus, the distribution of martensite in the dual phase microstructure obtained at room temperature.  相似文献   

10.
The electron backscattering diffraction technique was used to analyse the nature of carbides present in an ancient wootz steel blade. Bulky carbides, pro-eutectoid carbide along the prior austenite grain boundaries and fine spheroidized carbides were detected. Electron backscattering diffraction was employed to understand the texture of these carbides. The orientations of the cementite frequently occur in clusters, which points to a common origin of the members of the cluster. For the bands of coarse cementite, the origin is probably large coarse particles formed during the original cooling of the wootz cake. Pearlite formed earlier in the forging process has led to groups of similarly oriented fine cementite particles. The crystallographic texture of the cementite is sharp whereas that of the ferrite is weak. The sharp cementite textures point to the longevity of the coarse cementite throughout the repeated forging steps and to the influence of existing textured cementite on the nucleation of new cementite during cooling.  相似文献   

11.
The influence of the aging-deformation-treatment on the formation of intragranular ferrite (IGF) in a vanadium microalloyed medium carbon steel (Fe–0.34C–1.53Mn) was studied. Effects of aging time on the volume fraction of IGF and austenite grain size were also investigated. The effect of the aging-deformation recrystallisation process on the amount of ferrite and the mechanism of IGF formation was discussed. The results show that aging-deformation-treatment makes the precipitation position of the carbonitride transfer from austenite grain boundary to intragranular, and the precipitated intragranular carbonitrides become the nucleation cores of the IGF during the recrystallisation. The content of precipitated carbonitrides, and the volume fraction of ferrites and the grain size of austenites, increase with the increasing aging time.  相似文献   

12.
The microstructures produced during continuous cooling of two particular non-oriented lamination steels have been examined using light microscopy, scanning electron microscopy and transmission electron microscopy. In addition to proeutectoid ferrite and pearlite, cementite was present on ferrite grain boundaries and on proeutectoid ferrite/ pearl ite interfaces. Mechanisms for the formation of these cementite films are presented. The microstructural results demonstrate that ferrite is the active nucleus for pearlite in these low-carbon steels. In addition, the data suggest that in addition to branching, the pearlite reaction can be initiated by the nucleation of a series of cementite precipitates on the proeutectoid ferrite/austenite interface.  相似文献   

13.
研究了淬火回火态30CrMnSiA钢重新加热时奧氏体形成动力学。建立了回火钢奥氐体等温形成的动力学方程和T~1nτ等温曲线。计算了碳的扩散激活能。表明,奥氏体形成过程具有明显扩散相变的特征。  相似文献   

14.
Abstract

A correlation has been established between the rate of grain boundary migration during austenitisation and the hardenability of steels containing 0·2–0·3%C, 1·5–1·7%Mn, up to 0·35% V, and small additions of Al or Ti. Interaction between the austenite grain boundaries and pinning particles was investigated using transmission electron microscopy and segregation to the austenite grain boundaries was examined using Auger electron spectroscopy. It has been concluded that the velocity of grain boundary migration during austenitisation influences the extent of equilibrium segregation to the austenite grain boundaries which, in turn, affects the hardenability. Pinning of the austenite grain boundaries enabled the potential hardenability effect of the alloying elements to be increased. Mechanisms have been discussed for the ways in which segregation, particularly of V, occurs to pinned or immobilised austenite grain boundaries, and the conditions by which most effective grain boundary pinning can be achieved have been considered. Some technological implications have been suggested.

MST/804  相似文献   

15.
Abstract

A laboratory study was carried out to determine the characteristics of austenite grain growth and recrystallisation, strain induced precipitation, and continuous cooling transformation kinetics for two microalloyed medium carbon steels (1541 + Ti,V and 1541 + Nb). Austenite grain refinement is achieved by a combination of undissolved carbonitride precipitates at the reheat temperature, deformation recrystallisation at temperatures above T NR and strain induced carbonitride precipitation. Deformation below T NR promotes transformation to grain boundary ferrite (GBF), intragranular ferrite (IGF), and pearlite (P) at the expense of bainite (B) in both steels. This is attributed to increased density of nucleation sites for ferrite and pearlite at austenite grain boundaries, twin boundaries, and deformation bands. The results suggest that thermomechanical forging schedules could be designed to produce refined F + P microstructure, and hence, to realise improved strength, toughness, and machinability in the forging.  相似文献   

16.
Abstract

In this paper the total driving force for the decomposition of retained austenite and martensite are calculated together with the nucleation and growth characteristics of cementite in the two phases. The results demonstrate that the driving force for the decomposition of martensite is an order of magnitude less than that of austenite. However, the driving force for cementite precipitation in martensite is two orders of magnitude greater than in austenite with a much shorter incubation period. On short term tempering cementite precipitates from martensite whereas on longer term tempering decomposition of retained austenite occurs because of the increase in driving force which is enhanced by the contraction of the martensite on decomposition. It is argued that the precipitation of cementite from the austenite results in tempered martensite embrittlement, a mechanism dependent upon the two related decomposition processes. The segregation of trace impurities or the precipitation of cementite at the grain boundaries is not a prerequisite.

MST/240  相似文献   

17.
用焊接热模拟方法研究了V-N-Ti和Nb-V-Ti微合金化正火型海工钢模拟粗晶热影响区(CGHAZ)组织和韧性的变化规律。结果表明,组织的不同使V-N-Ti设计正火型海工钢的模拟CGHAZ韧性比Nb-V-Ti钢的好。对于V-N-Ti钢,较高的N含量提高了富Ti(Ti, V)(C, N)粒子析出温度和铁素体形核能力,使模拟CGHAZ原始奥氏体晶粒和(取向差角为15°)晶粒细化,并生成能阻止或使解理裂纹的偏转细小多边形铁素体,因此具有良好的低温韧性。而Nb-V-Ti钢模拟CGHAZ原奥氏体晶界上的链状M-A、粗大的原始奥氏体晶粒和有效晶粒尺寸,是模拟CGHAZ韧性差的原因。  相似文献   

18.
Based on multiphase field conception and integrated with the idea of vectorvalued phase field, a phase field model for typical allotropic transformation of solid solution is proposed. The model takes the non-uniform distribution of grain boundaries of parent phase and crystal orientation into account in proper way, as being illustrated by the simulation of austenite to ferrite transformation in low carbon steel. It is found that the misorientation dependent grain boundary mobility shows strong influence on the formation of ferrite morphology comparing with the weak effect exerted by misorientation dependent grain boundary energy. The evolution of various types of grain boundaries are quantitatively characterized in terms of its respective grain boundary energy dissipation. The simulated ferrite fraction agrees well with the expectation from phase diagram, which verifies this model.  相似文献   

19.
Abstract

Ferrite grain refinement by accelerated cooling has been studied in a carbon steel. The size of ferrite grains dα formed by continuous cooling transformation from polygonal austenite has been measured as a function of cooling rate and austenite grain size dγ. In the cooling rate range studied (q= 0·05–5 K s?1), dα was found to be proportional to q?0·26dγ0·46. The mechanism of grain refinement by accelerated cooling is discussed, and it is shown that this occurs in the transformation where the ratio of nucleation to growth rate increases with a decrease in temperature. The austenite grain size dependence of ferrite grain size is shown to become progressively large as the nucleation mode changes from homogeneous to grain surface to edge to corner. A theoretical estimation of ferrite grain size formed by continuous cooling transformation was attempted on the basis of nucleation and growth rates. In the alloy studied, ferrite grain size was theoretically estimated to be proportional to q?0·17dγ0·33. This was in close agreement with the dependence obtained in the present experiment.

MST/466  相似文献   

20.
The present study elaborately discussed the effect of grain boundary precipitation and delta (δ) ferrite formation on surface defects of low nickel austenitic stainless steels. Several specimens were collected from different locations (i.e. centre and side) of cast slabs and rolled plates with variable nitrogen and carbon contents. The alloy segregation, precipitation and δ-ferrite formations were analyzed using several characterization tools. It was observed that the segregation of alloying elements along the grain boundaries is solely responsible for variation in precipitation and δ-ferrite formation among the specimens. Type of precipitation is mainly composition dependant. Relatively higher nitrogen and low carbon containing specimens show Cr2N and/or Cr3C1.52N0.48 rich continuous precipitation along the grain boundaries. On the other hand, decrease in nitrogen content along with the increase in carbon content results in discontinuous or cellular type of precipitation. Continuous grain boundary precipitates were found more detrimental compare to discontinuous or cellular precipitations. Micro-cracks are probably generated at the stress concentrated areas of precipitation–matrix interfaces and propagate along the interfaces or grain boundaries towards the stress free surface. Again, additional driving forces towards the surface crack formation and propagation are facilitated by the δ-ferrite and austenite interfaces during hot rolling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号