首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 890 毫秒
1.
可再生生物质制氢是未来氢能的主要来源,涉及到化学制氢和生物制氢.生物质化学制氢技术包括生物质气化、热解、超临界转化等常规热化学法制氢和生物质解聚液相产物的蒸汽重整、水相重整、自热重整和光催化重整制氢等技术.对以上生物质制氢方法进行了综述,对反应条件、反应机理、催化剂使用、技术经济性及各自存在的优缺点进行分类整理与比较.认为生物质气化制氢及热解制氢技术的发展较成熟,可以实现规模化生产,但是制氢的选择性和产氢率不高;生物质液相产物催化重整制氢技术更适合较大规模的集中制氢,转化率和产氢率高,但技术途径复杂.对生物质制氢技术进行了展望.  相似文献   

2.
生物质制氢与燃料电池的技术整合将提供一条完全清洁的后续能源路线,并能够为生物质能源的高效经济利用开辟具有竞争力的创新途径,为氢能技术的发展提供有利保障.在对生物质热化学制氢的工艺路线和过程经济性等进行对比分析的基础上,明确了制氢路线开发中的优化方向;对生物质燃气在高温燃料电池系统中应用的诸多影响因素进行了系统分析,并结合目前国内外生物质基燃料电池系统的研究进展,明确了适宜的生物质制氢与燃料电池系统的整合工艺开发中需要克服的障碍和路线的发展方向.  相似文献   

3.
生物质热化学转换制氢的研究进展   总被引:2,自引:0,他引:2  
生物质资源丰富,对环境的友好性以及可再生性受到了越来越广泛的重视.氢,清洁无污染,高效,可存储和运输,被视为最理想的能源载体和将来矿物燃料的可替代能源.生物质热化学转化制取富氢气体的技术路线也为氢能源系统的发展提供了广阔的前景.论述了生物质热化学转换制氢中热解制氢和气化催化制氢2种技术路线,当前存在的问题,研究进展以及解决的方法,并对未来的发展和应用前景做出了一定的预测.  相似文献   

4.
生物质热化学转化制氢在技术经济性上有优势,但产品气焦油含量高、氢浓度低且产率有待提高.在先前的制氢研究基础上,进行了理论分析和试验系统设计优化,提出了生物质流化床-固定床二级催化制氢技术方案,着重介绍了自动数据采集系统、送料系统、气化介质送入方式以及催化剂的添加方式,给出了循环流化床气化炉的流体特性试验数据并分析了制氢过程的关键影响因素,为制氢热态试验的开展与生物质热化学制氢理论的建立提供指导.  相似文献   

5.
生物质能的开发利用   总被引:1,自引:0,他引:1  
介绍了生物质能源的主要利用形式、目前发展的情况及将来的发展趋势。从生物质的直接燃烧、生物转换(发酵)、生物质制取液体燃料或气体燃料以及生物质制氢和生物质燃料电池方面,介绍了生物质燃料利用形式的优缺点,对生物质燃料的商品化和大规模利用进行了展望。同时对生物质利用所面临的主要问题进行了介绍,并提出了一些解决方案。  相似文献   

6.
利用农业废弃物进行生物制氢,生物质产生的氢被认为是最清洁的燃料,其与甲烷和化石燃料燃烧产物比较,燃烧的副产品只有水.产氢菌通过其耐热特性进行分离.影响产氢菌产生氢气的因素有:pH、温度、基质浓度和生物量比例等.研究显示:当以30%的葡糖糖作为基质、温度为40℃、pH为4.3时,产氢效率最好.其结果为进一步研究提高批反应及连续厌氧产氢效率提供支撑.  相似文献   

7.
生物质燃气供暖系统模式分析   总被引:1,自引:0,他引:1  
生物质燃气供暖是一种新型可再生能源利用方式.为推动其发展,笔者在大量调研的基础上,介绍了国外先进生物质燃气供暖工程的系统模式,并对我国具有代表性的生物质燃气供暖系统模式及运行机理进行分析研究,评价了我国发展生物质燃气供暖的优越性及推广应用前景.  相似文献   

8.
生物质燃料电池与生物制氢技术正在飞速发展.生物质燃料电池在有机废物和废水的处理领域非常实用,可以将有机物转化成生物质能源,用来处理生活有机垃圾和废水.近期,世界最新研究领域之一的便是在生物质反应器中接种光合细菌和氢化细菌,并使之能够与生物质燃料电池相结合,利用监控系统来控制生物反应器和生物质燃料电池的反应.本试验的目的是在可变操作条件下测试生物反应器和生物质燃料电池(PEFC)联合系统的产流能力.嗜温梭菌是由牛粪中分离出并接种到反应器中生产氢气,氢气的产生由微型气相色谱仪测定,当氢气浓度达到80%视为达到稳定状态.生物质燃料电池在较低的压力下进行,在高于3 k Pa的环境中产生稳定的电流3.5 m A和稳定的电压0.65 V,平均发电量为25 W.同时,用有限元分析了阳极上的氢浓度分布.  相似文献   

9.
介绍了生物质能技术的发展应用、生物制氢的发展现状与生物制氢的方法,并分析了生物制氢中生态因子的影响和金属离子对制氢过程中酶促反应和产氢率的影响.  相似文献   

10.
生物质气合成燃料二甲醚   总被引:1,自引:0,他引:1  
介绍了生物质气化、生物质气净化、生物质气重整、生物质气合成二甲醚等技术,并且对生物质合成二甲醚系统中的关键技术如气化技术、净化技术和二甲醚合成技术进行了分析,提出了适合中国国情的工艺技术路线.  相似文献   

11.
The effects of initial substrate (5 -60 g/L) and biomass concentration (0.5 -3 g/L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The...  相似文献   

12.
使用常压双颗粒流化床反应器,对稻壳生物质进行了添加C02吸附剂的催化热解研究.结果表明:C02吸附剂CaO和Ca(OH)2可明显促进生物质催化热解初期热解产物的二次反应,使产物向产氢方向移动.添加CaO时,产氢量随CaO添加量的增加而增加;而随Ca(OH)2添加量的增加,富氢燃气产物中氢气的体积分数和产氢量均有峰值出现.同时,Ca(OH)2在催化热解过程产生的H20可作为生物质二次反应和水煤气变换反应(WGS)的反应物,从而进一步提高热解产物中氢气的产量.  相似文献   

13.
两种类型生物制氢反应器的运行及产氢特性   总被引:4,自引:0,他引:4  
为探求反应器型式对发酵法生物制氢过程的影响,分别采用连续流搅拌槽式反应器(CSTR)和颗粒污泥膨胀床反应器(EGSB)接种厌氧活性污泥,从糖蜜废水中制取氢气.运行中控制温度为35℃,通过缩短水力停留时间(HRT)和增加进水COD质量浓度的方式逐渐提高容积负荷(OLR),分别对CSTR系统和EGSB系统的产氢速率、pH、液相末端产物及生物量进行研究.结果表明,两个系统中,产氢速率均随OLR提高而逐渐升高.CSTR的最佳产氢OLR为25~35 kg/(m3.d),而EGSB的最佳产氢OLR为70~80 kg/(m3.d);此时,CSTR系统的最大产氢速率为6.21 L/(L.h),EGSB系统的最大产氢速率可达18.0 L/(L.h).稳定运行期,EGSB系统的生物量为27.6 gVSS/L,而CSTR的生物量仅为7.8 gVSS/L,说明较高的生物量是生物制氢反应器稳定运行和高效产氢的关键.两个系统均可形成乙醇型发酵,说明发酵类型的形成不受反应器型式影响.与CSTR反应器相比,EGSB反应器具有更好的耐酸能力.  相似文献   

14.
青霉T24-2降解甘蔗渣及发酵产氢的研究   总被引:1,自引:0,他引:1  
通过单因素试验及正交试验对青霉(Penicilliumsp.)T24-2产纤维素酶及酶解甘蔗渣的条件进行优化,并分析了产酸克雷伯氏菌(Klebsiella oxytoca)HP1利用甘蔗渣糖化液产氢的特性。单因素试验结果表明,蔗渣/麸皮质量比、曲酶/蔗渣质量比、固(曲酶+蔗渣)/液(水)质量比、糖化时间是影响产纤维素酶和蔗渣糖化率的主要因素。经正交试验并考虑大规模应用时的成本,确定青霉T24-2固态发酵产纤维素酶的最佳蔗渣/麸皮质量比为4∶6。利用曲酶对甘蔗渣进行糖化的最佳条件为:曲酶/蔗渣质量比为1∶3,固(曲酶+蔗渣)/液(水)质量比为1∶3,糖化时间为20h,在此条件下甘蔗渣糖化率可达43.6%。产氢试验表明产酸克雷伯氏菌HP1利用甘蔗渣糖化液,每克甘蔗渣产氢可达41.0mL。研究表明青霉T24-2是一株较好的产纤维素酶菌株,可应用于纤维素生物质的开发与利用。  相似文献   

15.
生物质热解油及乳化油特性的研究   总被引:1,自引:0,他引:1  
为了拓宽生物油的应用领域,采用间歇式给料的鼓泡流化床对典型生物质(桦木屑、玉米秸秆和稻壳)的快速热解进行了试验,对生物油、柴油与稻壳油混合的乳化油进行了分析.结果表明:木屑生物油的产率最高,生物油的热值为16~18MJ/kg,其主要成分为酸类、酚类、呋喃类、醇类和烷烃类.针对生物油难于利用的特点,将生物油与柴油乳化混合,对其乳化比例和理化特性进行了研究,发现乳化油比生物油更稳定,乳化方法简单、可行.  相似文献   

16.
针对脂肪难以产氢、能源转化率低的问题,以肥猪肉作为脂肪代表物,研究了其预处理后发酵联产氢气和甲烷的特性.结果表明,在产氢阶段,碱和脂肪酶预处理促进了脂肪的水解,提高了累积产氢量.驯化菌种能较快的适应底物环境,从而缩短延滞期并提高了产气速率.碱水解时应控制体系的Na+终浓度不超过0.2mol/L,更高的碱用量会因Na+浓度过高而抑制产氢.为了提高能源转化率和原料利用率,提出了利用脂肪发酵产氢后的有机酸废液继续联产甲烷的创新工艺,并利用该工艺得到底物总挥发性固体的单位产氢潜力为32.6mL/g,联产甲烷潜力为24.88mL/g.其中单产氢气的能源转化率为0.85%,联产甲烷以后的能源转化率可提高至2.99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号