首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Predicting mixed-mode fatigue crack propagation is an important and troublesome issue in structure assessment for decades. In the present paper an extended finite element method (XFEM) combined with a new cyclic cohesive zone model (CCZM) is introduced for simulating fatigue crack propagation under mixed-mode loading conditions, which has been implemented in the commercial general purpose software ABAQUS. The algorithm allows introducing a new crack surface at arbitrary locations and directions in a finite element mesh, without re-meshing. The cyclic cohesive zone model is based on the known SN curves and Goodman diagram for metallic materials and validated by uniaxial tension results. Furthermore, the sensitivity of the model parameter is investigated for mixed-mode fatigue. The virtual crack closure technique has been extended to the cohesive zone model and proposed to calculate the energy release rate for the generalized Paris’ law. Finally, the crack propagation rate and direction under mixed-mode fatigue loading conditions are studied.  相似文献   

2.
In conventional cohesive zone models the traction-separation law starts from zero load, so that the model cannot be applied to predict mixed-mode cracking. In the present work the cohesive zone model with a threshold is introduced and applied for simulating different mixed-mode cracks in combining with the extended finite element method. Computational results of cracked specimens show that the crack initiation and propagation under mixed-mode loading conditions can be characterized by the cohesive zone model for normal stress failure. The contribution of the shear stress is negligible. The maximum principal stress predicts crack direction accurately. Computations based on XFEM agree with known experiments very well. The shear stress becomes, however, important for uncracked specimens to catch the correct crack initiation angle. To study mixed-mode cracks one has to introduce a threshold into the cohesive law and to implement the new cohesive zone based on the fracture criterion. In monotonic loading cases it can be easily realized in the extended finite element formulation. For cyclic loading cases convergence of the inelastic computations can be critical.  相似文献   

3.
In this paper a two-dimensional fatigue cohesive zone model (CZM) for crack propagation in composites under cyclic loading has been formulated and validated through successful predictions of fatigue crack growth under pure and mixed mode conditions for several different composites. The proposed fatigue CZM assumes simple power-law functions for fatigue damage accumulation of which the damage parameters can be calibrated from simple fatigue tests under pure mode I and mode II conditions. The model relies solely on the in situ cohesive responses for fatigue damage rate calculation, enabling the differentiation of the local elemental load history from the global load history. An effective cycle jump strategy for high-cycle fatigue has also been proposed. It has been demonstrated that once calibrated, the fatigue CZM can predict the Paris laws for the pure modes. Furthermore, it can predict the Paris laws of any mixed-mode conditions without the need of additional empirical parameters. This is of significant practical importance because it leads to greatly reduced experimental needs for mixed mode crack propagation widely observed in composites under cyclic loads.  相似文献   

4.
5.
The analysis of constraint effects in fatigue crack growth in multi-layer structures is discussed. The process of material separation under cyclic loading is described by a cohesive zone model (CZM) with an irreversible constitutive relationship. The traction–separation behavior does not follow a predefined path, but is dependent on the evolution of the damage dependent cohesive zone properties. A modified boundary layer model is used in simulations of fatigue crack growth along the centerline crack of the metal layer sandwiched between two elastic substrates. Fatigue crack growth is computed for a series of values of metal layer thickness under constant and variable amplitude loading conditions. The results of the computations demonstrate that certain combinations of load magnitude, layer thickness and material properties results in significant constrain effects in fatigue crack growth. The influence of these constraint effects on fatigue crack growth rates and on crack closure processes is determined. The evolutions of the traction–separation law, the accumulated and current plastic zones, as well as the stress fields during the crack propagation are discussed.  相似文献   

6.
Structures are subjected to cyclic loads that can vary in direction and magnitude, causing constant amplitude mode I simulations to be too simplistic. This study presents a new approach for fatigue crack propagation in ductile materials that can capture mixed-mode loading and overloading. The extended finite element method is used to deal with arbitrary crack paths. Furthermore, adaptive meshing is applied to minimize computation time. A fracture process zone ahead of the physical crack tip is represented by means of cohesive tractions from which the energy release rate, and thus the stress intensity factor can be extracted for an elastic-plastic material. The approach is therefore compatible with the Paris equation, which is an empirical relation to compute the fatigue crack growth rate. Two different models to compute the cohesive tractions are compared. First, a cohesive zone model with a static cohesive law is used. The second model is based on the interfacial thick level set method in which tractions follow from a given damage profile. Both models show good agreement with a mode I analytical relation and a mixed-mode experiment. Furthermore, it is shown that the presented models can capture crack growth retardation as a result of an overload.  相似文献   

7.
8.
It is well-known that one of the major characteristics of variable fatigue loads, especially overloads, is the retardation of the fatigue crack due to the complex interaction of many factors such as the overload ratio, the timing of overloads, the stress ratio, the yield stress of the material, the thickness of the structure, and the stress history. However, studies of the combined effect of mixed-mode I+II constant amplitude fatigue loadings and a mixed-mode I+II single overload on fatigue behavior are still scant. In this study, fatigue tests were conducted under mixed-mode I+II constant amplitude loadings with a mixed-mode I+II single overload, with reference to the variation of fatigue crack retardation. The formation of the overload plastic zone (OPZ) ahead of the crack tip under a mixed-mode I+II single overload is studied experimentally by the measurement of the shape and size of the OPZ. The behavior of fatigue crack propagation under mixed-mode loading conditions is examined by changing the loading mode of a single overload, and the relationship between the mixed-mode I+II single overload and the behavior of fatigue crack propagation in terms of the characteristics of the OPZ is evaluated. The empirical modeling of the fatigue life under mixed-mode I+II constant amplitude loadings is proposed by considering the characteristics of both the OPZ and the combination of the mode-mixity of mixed-mode I+II constant amplitude loadings and a mixed-mode I+II single overload.  相似文献   

9.
The subject of fatigue which comprises crack nucleation, crack propagation and final failure or fracture has, over the years, been the subject of numerous theoretical and experimental studies. These studies have highlighted the extrinsic influence of mixed-mode loading in governing the fatigue behavior of a wide spectrum of engineering materials and structures. In this paper we review the basic criteria and models that have been proposed and used to predict crack behavior and response for structures containing large cracks and subject to mixed-mode loading. Since the aspect of crack growth is the focus of this review, the effects or contributions from intrinsic microstructural effects are largely excluded. Specific criteria discussed are the maximum tangential stress, minimum strain-energy density and the maximum energy-release rate criteria. The use of these criteria to predict the behavior of structures is examined based on results published in the open literature. The characteristics and implications of each criterion are examined and discussed with particular relevance to threshold conditions on crack growth, direction of crack growth and crack-growth rate. The limitations of each criterion are highlighted.  相似文献   

10.
Analysis of the crack growth propagation process under mixed-mode loading   总被引:1,自引:0,他引:1  
In the present paper, a computational model for crack growth analysis under Mode I/II conditions is formulated. The focus is on two issues – crack path simulation and fatigue life estimation. The finite element method is used together with the maximum principal stress criterion and the crack growth rate equation based on the equivalent stress intensity factor. To determine the mixed-mode stress intensity factors, quarter-point (Q-P) singular finite elements are employed. For verification purposes, a plate with crack emanating from the edge of a hole is examined. The crack path of the plate made of 2024 T3 Al Alloy is investigated experimentally and simulated by using the finite element method with the maximum tangential stress criterion. Then, the validation of the procedure is illustrated by applying the numerical evaluation of the curvilinear crack propagation in the polymethyl methacrylate (PMMA) beam and the Arcan specimen made of Al Alloy for which experimental results are available in the literature. In order to estimate fatigue life up to failure of the plate with crack emanating from the edge of a hole, the polynomial expression is evaluated for the equivalent stress intensity factor using values of stress intensity factors obtained from the finite element analysis. Additionally, the fatigue life up to failure of the Arcan specimen is analyzed for different loading angles and compared with experimental data. Excellent correlations between the computed and experimental results are obtained.  相似文献   

11.
Ductile sheet structures are frequently subjected to mixed mode loading, resulting that the structure is under the influence of a mixed mode stress field. Instances of interest are when stable crack growth occurs and when the crack-tip is propagating in this complex mixed-mode condition, prior to final fracture. Purposely designed apparatus was built to test thin-sheets of steel (Grade: DX51D) under mixed-mode I/II. These tests, under plane stress conditions, also investigated the effect of thickness on the specific essential work of fracture or the fracture toughness of the material under quasi-static cracking conditions. The fracture toughness is evaluated under incremental mixed-mode loading conditions. The direction of the propagating crack path and fracture type were observed and discussed as the loading mixity was varied. Whilst the specific essential work of fracture or fracture toughness was obtained using the energy approach, the theoretical analysis of the fracture type and direction of crack path were based on the crack tip stresses and fracture criterions of maximum hoop stress and maximum shear stress along with the utilisation of Hill’s theory. For mixed-mode I/II loading, the variation in the fracture toughness contributions ratios are evaluated and used predicatively using the established energy criterion approach to the crack tip stress intensity approach. The comparison between the theoretical directions of the crack path, failure mode propagation are in good agreement with those obtained from experimental testing indicating the definite link between both approaches.  相似文献   

12.
A general subsurface crack propagation analysis methodology for the wheel/rail rolling contact fatigue problem is developed in this paper. A three-dimensional elasto-plastic finite element model is used to calculate stress intensity factors in wheels, in which a sub-modeling technique is used to achieve both computational efficiency and accuracy. Then the fatigue damage in the wheel is calculated using a previously developed mixed-mode fatigue crack propagation model. The advantages of the proposed methodology are that it can accurately represent the contact stress of complex mechanical components and can consider the effect of loading non-proportionality. The effects of wheel diameter, vertical loading amplitude, initial crack size, location and orientation on stress intensity factor range are investigated using the proposed model. The prediction results of the proposed methodology are compared with in-field observations.  相似文献   

13.
Microfractographic Analysis of Delamination Growth in Fatique Loaded – Carbon Fibre/Thermosetting Matrix Composites Carbon-fibre-reinforced plastics (CFRP) are known to be considerably less sensitive to fatigue loading than aluminium (Al) alloys, for instance. However, even in the presence of small delaminations, the damage tolerance of structural components may be considerably reduced. The scope of the present contribution is to investigate fatigue phenomena in CFRP materials (with thermosetting matrix) by means of microfractography. The microgfractographic features of the fracture surfaces mirror the processes of deformation and fracture at the delamination front. The fatigue fracture behaviour of a CFRP laminate subjected to cyclic mixed-mode loading is determined by matrix-controlled failure mechanisms. Under pure mode-II loading conditions, rollers in addition to fatigue striations appear in the fibre imprints whose formation mechanism was explained by means of high-resolution field-emission scanning electron microscopy (FE-SEM). The ratio between the local tensile and shear stress components influences the propagation direction of secondary cracks originating at the fibres. The local fracture propagations in these secondary cracks can be recognised through the fatigue striations appearing on the surface of the matrix. A comparison with static mixed-mode loading reveals that in both cases the crack propagation follows the path of the local maximum main stress. Applying mathematical relationships derived from the theory of elasticity permitted developing a mixed-mode loading model which makes it possible to predict the crack processes and hence to explain the formation of typical fracture-morphological features.  相似文献   

14.
In the present paper, the fatigue crack propagation of longitudinal flaws starting in butt-welded joints of rails is analysed. Firstly Finite Element simulations are carried out, in order to determine the actual stress intensity factor histories caused by the passage of the wheel over the rail. Simulations show that fatigue crack growth is dominated by an out-of-phase Mode I–Mode II mechanism with an overlapping of about 180 degrees. Then, mixed-mode fatigue test experiments have been designed in order to reproduce in-service conditions at laboratory test level. For this purpose, tubular specimens have been subjected to mixed-mode loading (reversal torsion combined with axial tension/compression). The crack growth propagation dominated by the shear has been confirmed. At the end of the paper, the conditions to obtain the shear mode crack propagation are discussed and the kinetics data are presented.  相似文献   

15.
The cohesive stress transfer during the sub-critical crack growth associated with the debonding of FRP from concrete under fatigue loading is experimentally investigated using the direct shear test set-up. The study focused on high-amplitude/low-cycle fatigue. The fatigue sub-critical crack growth occurs at a load that is smaller than the static bond capacity of the interface, obtained from monotonic quasi-static loading, and is also associated with a smaller value of the interfacial fracture energy. The strain distribution during debonding is obtained using digital image correlation. The results indicate that the strain distribution along the FRP during fatigue is similar to the strain distribution during debonding under monotonic quasi-static loading. The cohesive crack model and the shape of the strain distribution adopted for quasi-static monotonic loading is indirectly proven to be adequate to describe the stress transfer during fatigue loading. The length of the stress transfer zone during fatigue is observed to be smaller than the cohesive zone of the interfacial crack under quasi-static monotonic loading. The strain distribution across the width of the FRP sheet is not altered during and by fatigue loading. A new formulation to predict the debonding crack growth during fatigue is proposed.  相似文献   

16.
Very often, different approaches are used for crack initiation and crack growth predictions. The current article introduces a recently developed approach that can be used for the predictions of both crack initiation and crack propagation. A basic assumption is that both crack nucleation and crack growth are governed by the same fatigue damage mechanisms and a single fatigue damage criterion can model both stages. A rule is that any material point fails to form a fresh crack if the total accumulated fatigue damage reaches a limit. For crack initiation predictions, the stresses and strains are obtained either directly from experiments or though a numerical analysis. For the prediction of crack growth, the approach consists of two steps. Elastic‐plastic stress analysis is conducted to obtain the detailed stress‐strain responses. A general fatigue criterion is used to predict fatigue crack growth. Compact specimens made of 1070 steel were experimentally tested under constant amplitude loading with different R‐ratios and the overloading influence. The capability of the approach to predict both crack initiation and the crack growth under these loading conditions was demonstrated by comparing the predictions with the experimental observations.  相似文献   

17.
A cracked elastostatic structure is artificially divided into subdomains of simpler topology such that the well-developed classic dual integral equations can be applied appropriately to each domain. Applying the continuity and equilibrium conditions along artificial boundaries and properties of the integral kernels a single-domain dual-boundary-integral equation formulation is derived for a cracked elastic structure. A cohesive zone model is used to model the crack tip processes and is coupled with the single-domain dual-boundary-integral equation formulation; the resulting nonlinear equations are solved using the iterative method of successive-over-relaxation. The constitutive law used for a crack includes three parts: a law relating cohesive force to crack displacement difference when a crack is opening, a characterization of tangential interaction between crack surfaces when the crack surfaces are in contact, and a maximum principal stress criterion of crack advance. Incorporation of local unloading effect of the cohesive zone material has enabled a simulation of fracture with initial damage, partial development of the failure process zone at structural instability and multiple crack interaction. Some of the features of the method are demonstrated by considering three examples. The first problem is a single-edge-cracked specimen that exhibits a snap-back instability. The second example is the development of wing cracks from an angled crack under compression. The last example demonstrates the capability to consider mixed-mode crack growth and interaction of cracks. Thus, the problem of crack growth has been reduced to the determination of the cohesive model for the fracture process. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
An approach to determine the crack growth direction under mixed-mode loading conditions is presented. The plastic zone shape around the crack tip is applied for evaluating angle of crack propagation. It is proposed that a mixed-mode crack will extend along the plastic zone radius with a minimum value. The prediction of the proposed criterion is compared with the experimental data and other models. The agreement is fairly good.  相似文献   

19.
A numerical analysis using cohesive zone model under cyclic loading is proposed to develop a coupled predictive approach of crack growth in single crystal. The process of material damage during fatigue crack growth is described using an irreversible cohesive zone model, which governs the separation of the crack flanks and eventually leads to the formation of free surfaces. The cohesive zone element is modeled to accumulate fatigue damage during loadings and no damage during unloadings. This paper presents the damage model and its application in the study of the crack growth for precracked specimens. The use of cohesive zone approach is validated through a convergence study. Then, a general procedure of parameters calibration is presented in pure fatigue crack growth. In the last section, an extension of the cohesive zone model is presented in the case of creep–fatigue regime at high temperature. The model showed its capability to predict with a good agreement the crack growth in the case of complex loading and complex specimen geometries.  相似文献   

20.
A cohesive failure model is proposed to simulate fatigue crack propagation in polymeric materials. The model relies on the combination of a bi-linear cohesive failure law used for fracture simulations under monotonic loading and an evolution law relating the cohesive stiffness, the rate of crack opening displacement and the number of cycles since the onset of failure. The fatigue component of the cohesive model involves two parameters that can be readily calibrated based on the classical log-log Paris failure curve between the crack advance per cycle and the range of applied stress intensity factor. The paper also summarizes a semi-implicit implementation of the cohesive model into a cohesive-volumetric finite element framework, allowing for the simulation of a wide range of fatigue fracture problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号