首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Recent efforts dedicated to the mitigation of tungsten brittleness have demonstrated that tungsten fiber-reinforced composites acquire pseudo ductility even at room temperature. Crack extension and fracture process is basically defined by the strength of tungsten fibers. Here, we move forward and report the results of mechanical and microstructural investigation of different grades of W wire with a diameter of 150 μm at elevated temperature up to 600 °C. The results demonstrated that potassium doping to the wire in the as-fabricated state does not principally change the mechanical response, and the fracture occurs by grain elongation and delamination. Both fracture stress and fracture strain decrease with increasing test temperature. Contrary to the as-fabricated wire, the potassium-doped wire annealed at 2300 °C exhibits much lower fracture stress. The fracture mechanism also differs, namely: cleavage below 300 °C and ductile necking above. The change in the fracture mechanism is accompanied with a significant increase of the elongation to fracture being ~ 5% around 300 °C.  相似文献   

2.
Indium antimonide (InSb) has been plastically deformed over a wide temperature range, from 400 down to ?176 °C (see the companion paper: Kedjar B, Thilly L, Demenet JL, Rabier J. Acta Mater 2009) and transmission electron microscopy was used to characterize the deformation microstructures. In the ductile regime, i.e. T > Ttr1  150 °C, the crystal deforms via the nucleation and motion of perfect dislocations belonging to the glide set. In the brittle domain, i.e. for T < Ttr1  150 °C, two regimes are observed: for Ttr2  20 °C < T < Ttr1  150 °C, the crystal deformation takes place via the nucleation and glide of dissociated perfect dislocations or only leading partials, while for T < Ttr2  20 °C, the crystal deformation proceeds via the nucleation and motion of perfect dislocations belonging to the shuffle set. In view of these observations, the brittle-to-ductile transition (at Ttr1) is confirmed to correspond to a change in the dislocation nature in the glide set, from partial-mediated plasticity at low temperature to perfect-mediated plasticity at high temperature. Another transition is observed at Ttr2 and corresponds to the glide-to-shuffle transition which is observed experimentally for the first time in a III–V compound semiconductor.  相似文献   

3.
《Acta Materialia》2008,56(16):4369-4377
Upon aging at 300–450 °C, nanosize, coherent Al3(Sc1−xTix) precipitates are formed in pure aluminum micro-alloyed with 0.06 at.% Sc and 0.06 at.% Ti. The outstanding coarsening resistance of these precipitates at these elevated temperatures (61–77% of the melting temperature of aluminum) is explained by the significantly smaller diffusivity of Ti in Al when compared to that of Sc in Al. Furthermore, this coarse-grained alloy exhibits good compressive creep resistance for a castable, heat-treatable aluminum alloy: the creep threshold stress varies from 17 MPa at 300 °C to 7 MPa at 425 °C, as expected if the climb bypass by dislocations of the mismatching precipitates is hindered by their elastic stress fields.  相似文献   

4.
The oxidation behavior of a commercial Co69B12Si12Fe4Mo2Ni1 amorphous ribbon (Co6-AR) was studied over the temperature range of 400–600 °C in dry air. The results showed that virtually no oxidation occurred at 400 °C. On the other hand, the oxidation kinetics of the Co6-AR alloy at 450–600 °C generally followed a multi-stage parabolic-rate law, and the parabolic-rate constants (kp values) tend to increase with increasing temperature. It was found that the oxidation rates of the glassy alloy are slower than those of pure Co, indicative of a better oxidation resistance. An exclusive scale of CoO was observed after the oxidation of the glassy alloy in the temperature range of interest, and several crystalline phases formed on the substrate beneath the scale, consisting of pure Co (both FCC and HCP structures), Co3B, Co2Si, CoFe, and Co2B (absent at 450 °C), which indicated the occurrence of crystallization.  相似文献   

5.
Low-temperature precipitation reactions in 100Cr6 are characterized using transmission electron microscopy and X-ray diffraction, and modelled using thermokinetic methods. Martensitically transformed 100Cr6 is shown to display a complex microstructure composed of plate martensite, primary carbides, retained austenite and one or more of the ?-, η- and θ-phases. It is demonstrated that the maximum tensile strength (in excess of 2 GPa) and ductility is achieved by the θ-phase and the maximum yield strength is found during the α′ + η  α′ + θ transition. The interplay between the amount of carbon in solid solution, the martensite tetragonality and its morphology are related to the precipitate/matrix strain energy, the precipitate species present and their morphology. The progress in precipitate volume fraction, average radius, particle number and matrix composition can be quantitatively described by performing multicomponent precipitation kinetics calculations in paraequilibrium incorporating: (i) the effects of precipitate/matrix lattice misfit strain and particle aspect ratio, (ii) nucleation at plate boundaries and dislocations and (iii) an appropriate value for the precipitate/matrix interfacial energy, which is the only parameter fitted in the calculation.  相似文献   

6.
Wen  S. H.  Sha  J. B. 《Oxidation of Metals》2019,92(3-4):243-257
Oxidation of Metals - Mo–Si–B alloys were obtained by spark plasma sintering (SPS) using fine Mo–Si–B alloy powders with a particle size of 2.5&nbsp;μm. The SPS...  相似文献   

7.
8.
9.
10.
Understanding the stability of the three-phase Mo_ss + Mo3Si + Mo5SiB2 region is important for alloy design of Mo–Si–B-based refractory metal intermetallic composites. In this work, thermodynamic modeling is coupled with guided experiments to study phase stability in this three-phase region of the Mo–Si–B–X (X = Ti, Zr, Hf) system. Both the calculated and experimental results show that additions of Zr and Hf limit significantly the stability of the three-phase region because of the formation of the ternary phases MoSiZr and MoSiHf, while Ti addition leads to a much larger region of stability for the three-phase equilibrium.  相似文献   

11.
12.
13.
14.
15.
The deformation microstructures of Al and Al–Mn {1 1 0}〈1 1 2〉 single crystals have been characterized after room temperature channel-die compression up to true strains of 2.1. The evolution of local misorientations and microband structures were quantified by high-resolution electron backscatter diffraction in a field emission gun scanning electron microscope and their alignments compared with the traces of active slip planes and macroscopic shear stress planes. During plane-strain compression these “Brass” oriented crystals remain stable in terms of the final, average, orientation, with a small orientation spread. However, the microband alignment varies with strain and also with solute content. There is a general tendency for the microbands to be both crystallographic and non-crystallographic at low strains, then crystallographic, and finally mixed again at high strains (with some lamellar banding).  相似文献   

16.
A two-phase nanocomposite coating that consists of inclusions of silver in a vanadium nitride matrix (VN/Ag) was investigated as a potential adaptive coating with a reduced friction coefficient from 25 to 1000 °C. This nanocomposite structure was selected based on the premise that silver and silver vanadate phases would form on the surface of these coatings, reducing their friction coefficient in the (i) room to mid-range and (ii) mid-range to high temperatures, respectively. Silver and vanadium were expected to react with oxygen at high temperatures and create a lubricious silver vanadate film on the coating. The VN/Ag coatings were deposited using unbalanced magnetron sputtering and their elemental composition was evaluated using X-ray photoelectron spectroscopy. The tribological properties of the materials against Si3N4 balls were investigated at different temperatures. The lowest friction coefficients recorded for samples with identical compositions were 0.35, 0.30, 0.10 and 0.20 at 25, 350, 700 and 1000 °C, respectively. Post-wear testing Raman spectroscopy and X-ray diffraction (XRD) measurements revealed the formation of silver vanadate compounds on the surface of these coatings. In addition, real time Raman spectroscopy and high temperature XRD revealed that silver vanadate, vanadium oxide and elemental silver formed on the surface of these coatings upon heating to 1000 °C. Upon cooling, silver and vanadium oxide were found to combine at about 400 °C, leading predominantly to the formation of silver vanadate phases on the surface of these materials.  相似文献   

17.
《Acta Materialia》2004,52(7):1959-1970
We propose an atomistic model to describe the copper/sapphire interface by means of simple interatomic potentials involving only a few fitting parameters. Successful results are achieved when the copper atoms in the monatomic layer closest to the interface have properties different from the bulk. This layer is to accommodate the ionic/covalent bonding in the ceramics to the metallic bonding in copper. For an oxygen terminated interface, we fit the parameters of the potentials to the results of a rigid tensile test (explained in the text) simulated from first principles. The results of atomic relaxation near the interface are shown to be consistent with ab initio and experimental results available in the literature. Calculations reveal highly interesting relaxation dynamics near the interface. In the early stage of relaxation, a periodic network of partial misfit dislocations is formed, which later transforms into an irregular network due to the instability of the layer of copper atoms atop the oxygen atoms. This explains the interface incoherency observed in high-resolution electron microscopy. Calculations based on the FK model reproduce this effect.  相似文献   

18.
《Acta Materialia》2008,56(7):1570-1576
The authors have previously reported an estimate of the energy associated with the inhibition effect of γ′ martensite after β  β′ + γ′ cycling in CuAlNi single crystals. In this paper, a microscopic model is proposed to explain the γ′ inhibition, related to the localized interaction between a dislocation array and the twinned γ′ structure. Dislocations with Burgers vector [1 0 0]β and line direction [1 1 1]β in an isotropic β matrix are considered. The model takes into account the interaction between the martensitic stress-free transformation strains and the stress field created by the dislocation arrays. It is shown that the interaction is different for each twin-related variant in the γ′ martensite. The energy necessary to maintain the right volume relationship of the twinned γ′ variants to produce an undistorted β/γ′ habit plane is defined as the inhibition energy. A value of around 12 J mol−1 was obtained, which is in reasonable agreement with experimental results.  相似文献   

19.
《Intermetallics》2002,10(8):801-809
The phases and equilibria involved in the isothermal section at 400 °C of the Pr–Ag–Sn ternary system have been here investigated after different annealing times by X-ray diffraction, optical and scanning electron microscopy and electron probe microanalysis. Three ternary compounds have been confirmed: PrAgSn hP6 LiGaGe type, Pr3Ag4Sn4 oI22 Gd3Cu4Ge4 type and Pr5AgSn3 hP18 Hf5CuSn3 type. The solid solubility ranges of the binary compounds have been considered and trends of their lattice parameters studied. The tie-triangles of the ternary system have been defined. The general features of the section are discussed and compared to those of the other R–Ag–Sn ternary systems.  相似文献   

20.
The evolution of structure and thermal conductivity (k) has been studied for a range of Y–La2Zr2O7 solid solutions. Within the pyrochlore range (x < 0.40) Y3+ solely substitutes for La3+ below a critical composition factor (x = 0.15), above which it substitutes for both La3+ and the Zr4+. A glass-like k, approaching the amorphous limit, is observed within a certain composition range (0.20 ? x < 0.40). The glass-like k behaviour is attributed to a phonon localization effect that arises from small and weakly bound Y3+ cations (rattlers) oscillating locally and independently in oversized anionic cages [(La/Y)O8]. The ultralow and glassy k makes Y3+-doped La2Zr2O7 pyrochlores promising candidate materials for high temperature thermal barrier coating topcoats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号