首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L−1 CuSO4, initial moisture 4.1 mL·g−1), the laccase activity reached 138.6 ± 13.2 U·g−1. Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0–8.0, and after two hours at 55–60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 μmol·L−1, maximum velocity of 413.4 ± 21.2 U·mg−1 and catalytic efficiency of 3140.1 ± 149.6 L·mmol−1·s−1. The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.  相似文献   

2.
Background: The aim of the study was to evaluate the differences in the circulating immune cells’ subgroups after the atherosclerotic plaque removal in patients presenting with postoperative complications as compared to the patients without complications after carotid endarterectomy (CEA). Methods: Patients with significant carotid atherosclerosis (n = 124, age range: 44 to 87 years) who underwent CEA were enrolled in a prospective study. The immunology study using flow cytometry was performed to determine the percentages of peripheral blood T cells (CD4+, CD8+, Treg—CD4+/CD25+) and NK (natural killer) cells before and after the procedure. The data were expressed as the percentage of total lymphocytes ± the standard error of mean. Results: The mean percentage of lymphocytes (61.54% ± 17.50% vs. 71.82% ± 9.68%, p = 0.030) and CD4 T lymphocytes (T helper, 38.13% ± 13.78% vs. 48.39% ± 10.24%, p = 0.027) was significantly lower six hours after CEA in patients with postoperative 30-day cardiovascular and neurological complications as compared to the group without complications. On the other hand the mean NK level in the group with complications was significantly higher (21.61% ± 9.00% vs. 15.80% ± 9.31%, p = 0.048). Conclusions: The results of this study suggest that after carotid endarterectomy the percentages of circulating immune cells subsets differ in patients with and without postoperative complications.  相似文献   

3.
This study evaluated the chemical compositions of the leaves and fruits of eight black pepper cultivars cultivated in Pará State (Amazon, Brazil). Hydrodistillation and gas chromatography–mass spectrometry were employed to extract and analyze the volatile compounds, respectively. Sesquiterpene hydrocarbons were predominant (58.5–90.9%) in the cultivars “Cingapura”, “Equador”, “Guajarina”, “Iaçará”, and “Kottanadan”, and “Bragantina”, “Clonada”, and “Uthirankota” displayed oxygenated sesquiterpenoids (50.6–75.0%). The multivariate statistical analysis applied using volatile composition grouped the samples into four groups: γ-Elemene, curzerene, and δ-elemene (“Equador”/“Guajarina”, I); δ-elemene (“Iaçará”/“Kottanadan”/“Cingapura”, II); elemol (“Clonada”/“Uthirankota”, III) and α-muurolol, bicyclogermacrene, and cubebol (“Bragantina”, IV). The major compounds in all fruit samples were monoterpene hydrocarbons such as α-pinene, β-pinene, and limonene. Among the cultivar leaves, phenolics content (44.75–140.53 mg GAE·g−1 FW), the enzymatic activity of phenylalanine-ammonia lyase (20.19–57.22 µU·mL−1), and carotenoids (0.21–2.31 µg·mL−1) displayed significant variations. Due to black pepper’s susceptibility to Fusarium infection, a molecular docking analysis was carried out on Fusarium protein targets using each cultivar’s volatile components. F. oxysporum endoglucanase was identified as the preferential protein target of the compounds. These results can be used to identify chemical markers related to the susceptibility degree of black pepper cultivars to plant diseases prevalent in Pará State.  相似文献   

4.
Tetramethrin is a pyrethroid insecticide that is commonly used worldwide. The toxicity of this insecticide into the living system is an important concern. In this study, a novel tetramethrin-degrading bacterial strain named A16 was isolated from the activated sludge and identified as Gordonia cholesterolivorans. Strain A16 exhibited superior tetramethrin degradation activity, and utilized tetramethrin as the sole carbon source for growth in a mineral salt medium (MSM). High-performance liquid chromatography (HPLC) analysis revealed that the A16 strain was able to completely degrade 25 mg·L−1 of tetramethrin after 9 days of incubation. Strain A16 effectively degraded tetramethrin at temperature 20–40 °C, pH 5–9, and initial tetramethrin 25–800 mg·L−1. The maximum specific degradation rate (qmax), half-saturation constant (Ks), and inhibition constant (Ki) were determined to be 0.4561 day−1, 7.3 mg·L−1, and 75.2 mg·L−1, respectively. The Box–Behnken design was used to optimize degradation conditions, and maximum degradation was observed at pH 8.5 and a temperature of 38 °C. Five intermediate metabolites were identified after analyzing the degradation products through gas chromatography–mass spectrometry (GC-MS), which suggested that tetramethrin could be degraded first by cleavage of its carboxylester bond, followed by degradation of the five-carbon ring and its subsequent metabolism. This is the first report of a metabolic pathway of tetramethrin in a microorganism. Furthermore, bioaugmentation of tetramethrin-contaminated soils (50 mg·kg−1) with strain A16 (1.0 × 107 cells g−1 of soil) significantly accelerated the degradation rate of tetramethrin, and 74.1% and 82.9% of tetramethrin was removed from sterile and non-sterile soils within 11 days, respectively. The strain A16 was also capable of efficiently degrading a broad spectrum of synthetic pyrethroids including D-cyphenothrin, chlorempenthrin, prallethrin, and allethrin, with a degradation efficiency of 68.3%, 60.7%, 91.6%, and 94.7%, respectively, after being cultured under the same conditions for 11 days. The results of the present study confirmed the bioremediation potential of strain A16 from a contaminated environment.  相似文献   

5.
A series of novel oxyalkylchalcones substituted with alkyl groups were designed and synthesized, and the antioomycete activity of the series was evaluated in vitro against Saprolegnia strains. All tested O-alkylchalcones were synthesized by means of nucleophilic substitution from the natural compound 2′,4′-dihydroxychalcone (1) and the respective alkyl bromide. The natural chalcone (1) and 10 synthetic oxyalkylchalcones (2–11) were tested against Saprolegnia parasitica and Saprolegnia australis. Among synthetic analogs, 2-hydroxy,4-farnesyloxychalcone (11) showed the most potent activity against Saprolegnia sp., with MIC and MOC values of 125 µg/mL (similar to bronopol at 150 µg/mL) and 175 µg/mL, respectively; however, 2′,4′-dihydroxychalcone (1) was the strongest and most active molecule, with MIC and MOC values of 6.25 µg/mL and 12.5 µg/mL.  相似文献   

6.
The aims of this study were to develop the magnolol–chitosan films and study the positive effect of the combination of magnolol and chitosan. The addition of magnolol made the magnolol–chitosan films exhibit higher density (1.06–1.87 g/cm3), but the relatively lower water vapor permeability (12.06–7.36 × 10−11·g·m−1·s−1·Pa−1) and water content (16.10–10.64%). The dense and smooth surface and cross-section of magnolol–chitosan films were observed by environmental scanning electron microscopy (ESEM) images. The interaction of magnolol and chitosan was observed by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA). After the addition of magnolol, the antioxidant capacity of magnolol–chitosan films was increased from 18.99 to 82.00%, the growth of P. aeruginosa was inhibited and the inhibition percentage of biofilm formation was increased from 30.89 to 86.04%. We further verified that the application of magnolol–chitosan films on chilled pork significantly reduced the increases in pH value, inhibited the growth of microorganisms and extended the shelf life. Results suggest that magnolol had a positive effect on magnolol–chitosan films and could be effectively applied to pork preservation.  相似文献   

7.
The filamentous fungi XLA and XLC isolated from Cd-contaminated soil were identified morphologically and phylogenetically as Paecilomyces lilacinus and Mucoromycote sp., respectively. The minimum inhibitory concentrations (MICs) of Cd2+, Co2+, Cu2+, Zn2+, Cr3+ and Cr6+ in minimum mineral (MM) medium agar plates were 29,786, 2945, 9425, 5080, 1785 and 204 mg·L−1 for XLA and 11,240, 884, 9100, 2540, 3060 and 51 mg·L−1 for XLC, respectively. Favorable biosorption conditions for adsorption of Cd2+ by the tested fungi were investigated. Efficient performances of the biosorbents were described using Langmuir isotherm model, and the predicted maximum biosorption capacities for Cd2+ were 77.61 mg·g−1 of XLA and 79.67 mg·g−1of XLC. Experiments on desorption potential of biosorbents validated their efficacy at a large scale. Results showed that XLA obtained a desorption rate of 84.7% by 2% EDTA and XLC gained a desorption rate of 78.9% by 0.1 M HCl. Analysis by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS) and X-ray photoelectron spectroscopy (XPS) suggested that groups of C–N, COO– for XLA and C–N, CH2 and phosphate for XLC were the dominant binding sites for Cd2+ biosorption. Our results indicated that the fungus XLA, rather than XLC, could potentially be used as an inexpensive, eco-friendly and effective bioremediation agent for the removal of Cd2+ from wastewater.  相似文献   

8.
Nonsteroidal anti-inflammatory drugs (NSAIDs) belong to a class of universally and commonly used anti-inflammatory analgesics worldwide. A diversity of drawbacks of NSAIDs have been reported including cellular oxidative stress, which in turn triggers the accumulation of unfolded proteins, enhancing endoplasmic reticulum stress, and finally resulting in renal cell damage. Cordyceps cicadae (CC) has been used as a traditional medicine for improving renal function via its anti-inflammatory effects. N6-(2-hydroxyethyl)adenosine (HEA), a physiologically active compound, has been reported from CC mycelia (CCM) with anti-inflammatory effects. We hypothesize that HEA could protect human proximal tubular cells (HK–2) from NSAID-mediated effects on differential gene expression at the mRNA and protein levels. To verify this, we first isolated HEA from CCM using Sephadex® LH–20 column chromatography. The MTT assay revealed HEA to be nontoxic up to 100 µM toward HK–2 cells. The HK–2 cells were pretreated with HEA (10–20 µM) and then insulted with the NSAIDs diclofenac (DCF, 200 µM) and meloxicam (MXC, 400 µM) for 24 h. HEA (20 µM) effectively prevented ER stress by attenuating ROS production (p < 0.001) and gene expression of ATF–6, PERK, IRE1α, CDCFHOP, IL1β, and NFκB within 24 h. Moreover, HEA reversed the increase of GRP78 and CHOP protein expression levels induced by DCF and MXC, and restored the ER homeostasis. These results demonstrated that HEA treatments effectively protect against DCF- and MXC-induced ER stress damage in human proximal tubular cells through regulation of the GRP78/ATF6/PERK/IRE1α/CHOP pathway.  相似文献   

9.
Treatment of micro-polluted source water is receiving increasing attention because of environmental awareness on a global level. We isolated and identified aerobic denitrifying bacteria Zoogloea sp. N299, Acinetobacter sp. G107, and Acinetobacter sp. 81Y and used these to remediate samples of their native source water. We first domesticated the isolated strains in the source water, and the 48-h nitrate removal rates of strains N299, G107, and 81Y reached 33.69%, 28.28%, and 22.86%, respectively, with no nitrite accumulation. We then conducted a source-water remediation experiment and cultured the domesticated strains (each at a dry cell weight concentration of 0.4 ppm) together in a sample of source water at 20–26 °C and a dissolved oxygen concentration of 3–7 mg/L for 60 days. The nitrate concentration of the system decreased from 1.57 ± 0.02 to 0.42 ± 0.01 mg/L and that of a control system decreased from 1.63 ± 0.02 to 1.30 ± 0.01 mg/L, each with no nitrite accumulation. Total nitrogen of the bacterial system changed from 2.31 ± 0.12 to 1.09 ± 0.01 mg/L, while that of the control system changed from 2.51 ± 0.13 to 1.72 ± 0.06 mg/L. The densities of aerobic denitrification bacteria in the experimental and control systems ranged from 2.8 × 104 to 2 × 107 cfu/mL and from 7.75 × 103 to 5.5 × 105 cfu/mL, respectively. The permanganate index in the experimental and control systems decreased from 5.94 ± 0.12 to 3.10 ± 0.08 mg/L and from 6.02 ± 0.13 to 3.61 ± 0.11 mg/L, respectively, over the course of the experiment. Next, we supplemented samples of the experimental and control systems with additional bacteria or additional source water and cultivated the systems for another 35 days. The additional bacteria did little to improve the water quality. The additional source water provided supplemental carbon and brought the nitrate removal rate in the experimental system to 16.97%, while that in the control system reached only 3.01%, with no nitrite accumulation in either system. Our results show that aerobic denitrifying bacteria remain highly active after domestication and demonstrate the applicability of such organisms in the bioremediation of oligotrophic ecosystems.  相似文献   

10.
There are currently no diagnostic methods in vitro for aspirin-induced chronic urticaria (AICU) except for the provocation test in vivo. To identify disease markers for AICU, we investigated the single nucleotide polymorphism (SNP) of the promoter loci of high-affinity IgE receptor (FcεRIα) and CD203c expression level in Chinese patients with AICU. We studied two genotypic and allelic frequencies of rs2427827 (–344C/T) and rs2251746 (–66T/C) gene polymorphisms of FcεRIα in 20 patients with AICU, 52 subjects with airway hypersensitivity without aspirin intolerance, and 50 controls in a Chinese population. The results showed that the frequencies of two SNPs (–344C>T, –66C>T) were similar to the normal controls. The allele frequency of –344CC was significantly higher in the patients with AICU compared to those with airway sensitivity (p = 0.019). We also studied both histamine release and CD203c expression on KU812 cells to assess aspirin-induced basophil activation. We found that the activity of basophil activation of AICU was significantly higher in the patients with AICU compared to those with airway hypersensitivity without aspirin intolerance. The mean fluorescence intensity of the CD203c expression were 122.5 ± 5.2 vs. 103.3 ± 3.3 respectively, (p < 0.05), and the percentages of histamine release were 31.3% ± 7.4% vs. −24.0% ± 17.5%, (p < 0.05) respectively. Although the mean fluorescence intensity of CD203c expression and the percentage of histamine release were significantly up-regulated by aspirin, they were not affected by anti-IgE antibodies. These results suggest that a single SNP of FcεRIα (–344C>T) is less likely to develop AICU and the basophil activation activity in the sera by measuring CD203c expression can be applicable to confirm the diagnosis of AICU.  相似文献   

11.
Mag-Fluo-4 has revealed differences in the kinetics of the Ca2+ transients of mammalian fiber types (I, IIA, IIX, and IIB). We simulated the changes in [Ca2+] through the sarcomere of these four fiber types, considering classical (troponin –Tn–, parvalbumin –Pv–, adenosine triphosphate –ATP–, sarcoplasmic reticulum Ca2+ pump –SERCA–, and dye) and new (mitochondria –MITO–, Na+/Ca2+ exchanger –NCX–, and store-operated calcium entry –SOCE–) Ca2+ binding sites, during single and tetanic stimulation. We found that during a single twitch, the sarcoplasmic peak [Ca2+] for fibers type IIB and IIX was around 16 µM, and for fibers type I and IIA reached 10–13 µM. The release rate in fibers type I, IIA, IIX, and IIB was 64.8, 153.6, 238.8, and 244.5 µM ms−1, respectively. Both the pattern of change and the peak concentrations of the Ca2+-bound species in the sarcoplasm (Tn, PV, ATP, and dye), the sarcolemma (NCX, SOCE), and the SR (SERCA) showed the order IIB ≥ IIX > IIA > I. The capacity of the NCX was 2.5, 1.3, 0.9, and 0.8% of the capacity of SERCA, for fibers type I, IIA, IIX, and IIB, respectively. MITO peak [Ca2+] ranged from 0.93 to 0.23 µM, in fibers type I and IIB, respectively, while intermediate values were obtained in fibers IIA and IIX. The latter numbers doubled during tetanic stimulation. In conclusion, we presented a comprehensive mathematical model of the excitation–contraction coupling that integrated most classical and novel Ca2+ handling mechanisms, overcoming the limitations of the fast- vs. slow-fibers dichotomy and the use of slow dyes.  相似文献   

12.
Alpha thalassaemia is highly prevalent in the plural society of Malaysia and is a public health problem. Haematological and molecular data from 5016 unrelated patients referred from various hospitals to the Institute for Medical Research for α thalassaemia screening from 2007 to 2010 were retrieved. The aims of this retrospective analysis were to describe the distribution of various alpha thalassaemia alleles in different ethnic groups, along with their genotypic interactions, and to illustrate the haematological changes associated with each phenotype. Amongst the patients, 51.2% (n = 2567) were diagnosed with α thalassaemia. Of the 13 α thalassaemia determinants screened, eight different deletions and mutations were demonstrated: three double gene deletions, – – SEA, – – THAI, ––FIL; two single-gene deletions, α3.7 and – α4.2; and three non-deletion mutations, Cd59G > A (haemoglobin [Hb] Adana), Cd125T > C (Hb Quong Sze) and Cd142 (Hb Constant Spring). A high incidence of α3.7 deletion was observed in Malays, Indians, Sabahans, Sarawakians and Orang Asli people. However, the – – SEA deletion was the most common cause of alpha thalassaemia in Chinese, followed by the α3.7 deletion. As many as 27 genotypic interactions showed 1023 α thalassaemia silent carriers, 196 homozygous α+ thalassaemia traits, 973 heterozygous α0 thalassaemia carriers and 375 patients with Hb H disease. Statistical analysis showed a significant difference in the distribution of α thalassaemia determinants amongst the various ethnic groups. Hence, the heterogeneous distribution of common determinants indicated that the introduction of an ethnicity-targeted hierarchical α thalassaemia screening approach in this multi-ethnic Malaysian population would be effective.  相似文献   

13.
It has been well established that in the oxidative folding of hen egg white lysozyme (HEL), which has four SS linkages in the native state (N), three des intermediates, i.e., des[76–94], des[64–80], and des [6–127], are populated at 20 °C and N is dominantly formed by the oxidation of des[64–80] and des[6–127]. To elucidate the temperature effects, the oxidative folding pathways of HEL were reinvestigated at 5–45 °C in the presence of 2 M urea at pH 8.0 by using a selenoxide reagent, DHSox. When reduced HEL was reacted with 1–4 equivalents of DHSox, 1S, 2S, 3S, and 4S intermediate ensembles with 1–4 SS linkages, respectively, were produced within 1 min. After the oxidation, 3S was slowly converted to the des intermediates with formation of the native structures through SS rearrangement. At 5 °C, des[76–94] was populated in the largest amount, but the oxidation to N was slower than that of des[64–80] and des[6–127]. At 35 °C, on the other hand, des[64–80] and des[6–127] were no longer stable, and only des[76–94] was populated. The results suggested that the major folding pathways of HEL can be switched from one to the other by temperature control.  相似文献   

14.
In this work, Fe3O4@SiO2 nanoparticles were coated with mesoporous silica shell by SN+I pathway by using anionic surfactant (S) and co-structure directing agent (N+). The role of co-structure directing agent (CSDA) is to assist the electrostatic interaction between negatively charged silica layers and the negatively charged surfactant molecules. Prior to the mesoporous shell formation step, magnetic cores were coated with a dense silica layer to prevent iron oxide cores from leaching into the mother system under any acidic circumstances. However, it was found that both dense and mesoporous coating parameters affect the textural properties of the produced mesoporous silica shell (i.e., surface area, pore volume and shell thickness). The synthesized Fe3O4@SiO2@m-SiO2 (MCMSS) nanoparticles have been characterized by low-angle X-ray diffraction, transmission electron microscopy (TEM), and N2 adsorption-desorption analysis, and magnetic properties. The synthesized particles had dense and mesoporous silica shells of 8–37 nm and 26–50 nm, respectively. Furthermore, MCMSS possessed surface area of ca. 259–621 m2·g−1, and pore volume of ca. 0.216–0.443 cc·g−1. MCMSS showed docetaxcel cancer drug storage capacity of 25–33 w/w% and possessed control release from their mesochannels which suggest them as proper nanocarriers for docetaxcel molecules.  相似文献   

15.
A novel series of N-substituted cis- and trans-3-aryl-4-(diethoxyphosphoryl)azetidin-2-ones were synthesized by the Kinugasa reaction of N-methyl- or N-benzyl-(diethyoxyphosphoryl)nitrone and selected aryl alkynes. Stereochemistry of diastereoisomeric adducts was established based on vicinal H3–H4 coupling constants in azetidin-2-one ring. All the obtained azetidin-2-ones were evaluated for the antiviral activity against a broad range of DNA and RNA viruses. Azetidin-2-one trans-11f showed moderate inhibitory activity against human coronavirus (229E) with EC50 = 45 µM. The other isomer cis-11f was active against influenza A virus H1N1 subtype (EC50 = 12 µM by visual CPE score; EC50 = 8.3 µM by TMS score; MCC > 100 µM, CC50 = 39.9 µM). Several azetidin-2-ones 10 and 11 were tested for their cytostatic activity toward nine cancerous cell lines and several of them appeared slightly active for Capan-1, Hap1 and HCT-116 cells values of IC50 in the range 14.5–97.9 µM. Compound trans-11f was identified as adjuvant of oxacillin with significant ability to enhance the efficacy of this antibiotic toward the highly resistant S. aureus strain HEMSA 5. Docking and molecular dynamics simulations showed that enantiomer (3R,4S)-11f can be responsible for the promising activity due to the potency in displacing oxacillin at β-lactamase, thus protecting the antibiotic from undesirable biotransformation.  相似文献   

16.
We cloned the gene ACM61449 from anaerobic, thermophilic Caldicellulosiruptor bescii, and expressed it in Escherichia coli origami (DE3). After purification through thermal treatment and Ni-NTA agarose column extraction, we characterized the properties of the recombinant protein (CbPelA). The optimal temperature and pH of the protein were 72 °C and 5.2, respectively. CbPelA demonstrated high thermal-stability, with a half-life of 14 h at 70 °C. CbPelA also showed very high activity for polygalacturonic acid (PGA), and released monogalacturonic acid as its sole product. The Vmax and Km of CbPelA were 384.6 U·mg−1 and 0.31 mg·mL−1, respectively. CbPelA was also able to hydrolyze methylated pectin (48% and 10% relative activity on 20%–34% and 85% methylated pectin, respectively). The high thermo-activity and methylated pectin hydrolization activity of CbPelA suggest that it has potential applications in the food and textile industry.  相似文献   

17.
Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL−1 and 101.01 Units·mg·protein−1·min−1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3–7 and >50% activity in 10–50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris.  相似文献   

18.
Plant extracts are complex matrices and, although crude extracts are widely in use, purified compounds are pivotal in drug discovery. This study describes the application of automated preparative-HPLC combined with a rapid off-line bacterial bioassay, using reduction of a tetrazolium salt as an indicator of bacterial metabolism. This approach enabled the identification of fractions from Dodonaea viscosa that were active against Staphylococcus aureus and Escherichia coli, which, ultimately, resulted in the identification of a clerodane type diterpenoid, 6β-hydroxy-15,16-epoxy-5β, 8β, 9β, 10α-cleroda-3, 13(16), 14-trien-18-oic acid, showing bacteriostatic activity (minimum inhibitory concentration (MIC) = 64–128 µg/mL) against test bacteria. To the best of our knowledge, this is the first report on antibacterial activity of this metabolite from D. viscosa.  相似文献   

19.
The small molecule, meso-tetra(α,α,α,α-o-phenylacetamidophenyl) porphyrin (Mr1147.0) was used as complete antigen to elicit MAb through the immunization and cell fusion techniques. The MAb 1F2 obtained was demonstrated to be very pure by MALDI/TOFMS. The subtype of MAb 1F2 is IgG2a, which has a relative molecular weight of 156,678.8 Da.No significant change in the intensity of absorption peaks in UV and CD spectra was observed over a pH range between 6 and 12. The high stability of the abzyme and the tight binding between Fe porphyrin and antibody were also demonstrated. Vmax, Km, κcat, κcat/Km for abzyme are 5.18 × 10−8 Ms−1, 1.50 × 10−8 M, 0.518 s−1, 3.45 × 107 M−1s−1, respectively. The data obtained indicate that catalytic antibody has high catalytic activity. The chloroperoxidase activity of MAb 1F2-Fe porphyrin complex is stable from 10 °C to 60 °C.  相似文献   

20.
A thermostable esterase gene (hydS14) was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG) and catalytic triad (Ser88-Asp208-His235) of the esterase/lipase superfamily. The HydS14 sequence shows 46%–64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases), has three conserved regions, and contains the novel motif (GY(F)SLG), which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14) was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0–8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2–C6), displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM−1·S−1). In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号