首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
Evolutionary techniques such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and Cuckoo Search (CS) are promising nature-inspired meta-heuristic optimization algorithms. Cuckoo Search combined with Lévy flights behavior and Markov chain random walk can search global optimal solution very quickly. The aim of this paper is to investigate the applicability of Cuckoo Search algorithm in cryptanalysis of Vigenere cipher. It is shown that optimal solutions obtained by CS are better than the best solutions obtained by GA or PSO for the analysis of the Vigenere cipher. The results show that a Cuckoo Search based attack is very effective on the Vigenere cryptosystem.  相似文献   

2.
Recently, Gandomi and Alavi proposed a robust meta-heuristic optimization algorithm, called Krill Herd (KH), for global optimization. To improve the performance of the KH algorithm, harmony search (HS) is applied to mutate between krill during the process of krill updating instead of physical diffusion used in KH. A novel hybrid meta-heuristic optimization approach HS/KH is proposed to solve global numerical optimization problem. HS/KH combines the exploration of harmony search (HS) with the exploitation of KH effectively, and hence, it can generate the promising candidate solutions. The detailed implementation procedure for this improved meta-heuristic method is also described. Fourteen standard benchmark functions are applied to verify the effects of these improvements, and it is demonstrated that, in most cases, the performance of this hybrid meta-heuristic method (HS/KH) is superior to, or at least highly competitive with, the standard KH and other population-based optimization methods, such as ACO, BBO, DE, ES, GA, HS, KH, PSO, and SGA. The effect of the HS/FA parameters is also analyzed.  相似文献   

3.
Evolutionary algorithms (EAs) are fast and robust computation methods for global optimization, and have been widely used in many real-world applications. We first conceptually discuss the equivalences of various popular EAs including genetic algorithm (GA), biogeography-based optimization (BBO), differential evolution (DE), evolution strategy (ES) and particle swarm optimization (PSO). We find that the basic versions of BBO, DE, ES and PSO are equal to the GA with global uniform recombination (GA/GUR) under certain conditions. Then we discuss their differences based on biological motivations and implementation details, and point out that their distinctions enhance the diversity of EA research and applications. To further study the characteristics of various EAs, we compare the basic versions and advanced versions of GA, BBO, DE, ES and PSO to explore their optimization ability on a set of real-world continuous optimization problems. Empirical results show that among the basic versions of the algorithms, BBO performs best on the benchmarks that we studied. Among the advanced versions of the algorithms, DE and ES perform best on the benchmarks that we studied. However, our main conclusion is that the conceptual equivalence of the algorithms is supported by the fact that algorithmic modifications result in very different performance levels.  相似文献   

4.
This work presents a novel hybrid meta-heuristic that combines particle swarm optimization and genetic algorithm (PSO–GA) for the job/tasks in the form of directed acyclic graph (DAG) exhibiting inter-task communication. The proposed meta-heuristic starts with PSO and enters into GA when local best result from PSO is obtained. Thus, the proposed PSO–GA meta-heuristic is different than other such hybrid meta-heuristics as it aims at improving the solution obtained by PSO using GA. In the proposed meta-heuristic, PSO is used to provide diversification while GA is used to provide intensification. The PSO–GA is tested for task scheduling on two standard well-known linear algebra problems: LU decomposition and Gauss–Jordan elimination. It is also compared with other states-of-the-art heuristics for known solutions. Furthermore, its effectiveness is evaluated on few large sizes of random task graphs. Comparative study of the proposed PSO-GA with other heuristics depicts that the PSO–GA performs quite effectively for multiprocessor DAG scheduling problem.  相似文献   

5.
This paper proposes a new battery swapping station (BSS) model to determine the optimized charging scheme for each incoming Electric Vehicle (EV) battery. The objective is to maximize the BSS’s battery stock level and minimize the average charging damage with the use of different types of chargers. An integrated objective function is defined for the multi-objective optimization problem. The genetic algorithm (GA), differential evolution (DE) algorithm and three versions of particle swarm optimization (PSO) algorithms have been implemented to solve the problem, and the results show that GA and DE perform better than the PSO algorithms, but the computational time of GA and DE are longer than using PSO. Hence, the varied population genetic algorithm (VPGA) and varied population differential evolution (VPDE) algorithm are proposed to determine the optimal solution and reduce the computational time of typical evolutionary algorithms. The simulation results show that the performances of the proposed algorithms are comparable with the typical GA and DE, but the computational times of the VPGA and VPDE are significantly shorter. A 24-h simulation study is carried out to examine the feasibility of the model.  相似文献   

6.
Electric energy is the most popular form of energy because it can be transported easily at high efficiency and reasonable cost. Nowadays the real-world electric power systems are large-scale and highly complex interconnected transmission systems. The transmission expansion planning (TEP) problem is a large-scale optimization, complicated and nonlinear problem that the number of candidate solutions increases exponentially with system size. Investment cost, reliability (both adequacy and security), and congestion cost are considered in this optimization. To overcome the difficulties in solving the non-convex and mixed integer nature of this optimization problem, this paper offers a firefly algorithm (FA) to solve this problem. In this paper it is shown that FA, like other heuristic optimization algorithms, can solve the problem in a better manner compare with other methods such genetic algorithm (GA), particle swarm optimization (PSO), Simulated Annealing (SA) and Differential Evolution (DE). To show the feasibility of proposed method, applied model has been considered in IEEE 24-Bus, IEEE 118-Bus and Iran 400-KV transmission grid case studies for TEP problem in both adequacy and security modes. The obtained results show the capability of the proposed method. A comprehensive analysis of the GA, PSO, SA and DE with proposed method is also presented.  相似文献   

7.
Multi-objective layout optimization methods for the conceptual design of robot cellular manufacturing systems are proposed in this paper. Robot cellular manufacturing systems utilize one or more flexible robots which can carry out a large number of operations, and can conduct flexible assemble processes. The layout design stage of such manufacturing systems is especially important since fundamental performances of the manufacturing system under consideration are determined at this stage. Layout area, operation time and manipulability of robot are the three important criteria when it comes to designing manufacturing system. The use of nature inspired algorithms are not extensively explored to optimize robot workcell layouts. The contribution in this paper is the use of five nature-inspired algorithms, viz. genetic algorithm (GA), differential evolution (DE), artificial bee colony (ABC), charge search system (CSS) and particle swarm optimization (PSO) algorithms and to optimize the three design criteria simultaneously. Non-dominated sorting genetic algorithm-II is used to handle multiple objectives and to obtain pareto solutions for the problems considered. The performance of sequence pair and B*-Tree layout representation schemes are also evaluated. It is found that sequence pair scheme performs better than B*-Tree representation and it is used in the algorithms. Numerical examples are provided to illustrate the effectiveness and usefulness of the proposed methods. It is observed that PSO performs better over the other algorithms in terms of solution quality.  相似文献   

8.
State assignment (SA) for finite state machines (FSMs) is one of the main optimization problems in the synthesis of sequential circuits. It determines the complexity of its combinational circuit and thus area, delay, testability and power dissipation of its implementation. Particle swarm optimization (PSO) is a non-deterministic heuristic that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. PSO optimizes a problem by having a population of candidate solutions called particles, and moving them around in the search-space according to a simple mathematical formulae. In this paper, we propose an improved binary particle swarm optimization (BPSO) algorithm and demonstrate its effectiveness in solving the state assignment problem in sequential circuit synthesis targeting area optimization. It will be an evident that the proposed BPSO algorithm overcomes the drawbacks of the original BPSO algorithm. Experimental results demonstrate the effectiveness of the proposed BPSO algorithm in comparison to other BPSO variants reported in the literature and in comparison to Genetic Algorithm (GA), Simulated Evolution (SimE) and deterministic algorithms like Jedi and Nova.  相似文献   

9.
10.
Neural Processing Letters - Among numerous meta-heuristic algorithms, Differential evolution (DE) and Particle Swarm Optimization (PSO) are found to be an efficient and powerful optimization...  相似文献   

11.
This work presents particle swarm optimization (PSO), a collaborative population-based meta-heuristic algorithm for solving the Cardinality Constraints Markowitz Portfolio Optimization problem (CCMPO problem). To our knowledge, an efficient algorithmic solution for this nonlinear mixed quadratic programming problem has not been proposed until now. Using heuristic algorithms in this case is imperative. To solve the CCMPO problem, the proposed improved PSO increases exploration in the initial search steps and improves convergence speed in the final search steps. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the proposed PSO is much more robust and effective than existing PSO algorithms, especially for low-risk investment portfolios. In most cases, the PSO outperformed genetic algorithm (GA), simulated annealing (SA), and tabu search (TS).  相似文献   

12.
An attempt has been made to the effective application of a recently introduced, powerful optimization technique called differential search algorithm (DSA), for the first time to solve load frequency control (LFC) problem in power system. In this paper, initially, DSA optimized classical PI/PIDF controller is implemented to an identical two-area thermal-thermal power system and then the study is extended to two more realistic power systems which are widely used in the literature. To assess the usefulness of DSA, three enhanced competitive algorithms namely comprehensive learning particle swarm optimization (CLPSO), ensemble of mutation and crossover strategies and parameters in differential evolution (EPSDE), and success history based DE (SHADE) are studied in this paper. Moreover, the superiority of proposed DSA optimized PI/PID/PIDF controller is validated by an extensive comparative analysis with some recently published meta-heuristic algorithms such as firefly algorithm (FA), bacteria foraging optimization algorithm (BFOA), genetic algorithm (GA), craziness based particle swarm optimization (CRPSO), differential evolution (DE), teaching-learning based optimization (TLBO), particle swarm optimization (PSO), and quasi-oppositional harmony search algorithm (QOHSA). A case of robustness and sensitivity analysis has been performed for the concerned test system under parametric uncertainty and random load perturbation. Furthermore, to demonstrate the efficacy of proposed DSA, the system nonlinearities like reheater of the steam turbine and governor dead band are included in the system modeling. The extensive results presented in this article demonstrate that proposed DSA can effectively improve system dynamics and may be applied to real-time LFC problem.  相似文献   

13.
The job shop scheduling problem (JSSP) has been a hot issue in manufacturing. For the past few decades, scholars have been attracted to research JSSP and proposed many novel meta-heuristic algorithms to solve it. Whale optimization algorithm (WOA) is such a novel meta-heuristic algorithm and has been proven to be efficient in solving real-world optimization problems in the literature. This paper proposes a hybrid WOA enhanced with Lévy flight and differential evolution (WOA-LFDE) to solve JSSP. By changing the expression of Lévy flight and DE search strategy, Lévy flight enhances the abilities of global search and convergence of WOA in iteration, while DE algorithm improves the exploitation and local search capabilities of WOA and keeps the diversity of solutions to escape local optima. It is then applied to solve 88 JSSP benchmark instances and compared with other state-of-art algorithms. The experimental results and statistical analysis show that the proposed algorithm has superior performance over contesting algorithms.  相似文献   

14.
Solving reliability and redundancy allocation problems via meta-heuristic algorithms has attracted increasing attention in recent years. In this study, a recently developed meta-heuristic optimization algorithm cuckoo search (CS) is hybridized with well-known genetic algorithm (GA) called CS–GA is proposed to solve the reliability and redundancy allocation problem. By embedding the genetic operators in standard CS, the balance between the exploration and exploitation ability further improved and more search space are observed during the algorithms’ performance. The computational results carried out on four classical reliability–redundancy allocation problems taken from the literature confirm the validity of the proposed algorithm. Experimental results are presented and compared with the best known solutions. The comparison results with other evolutionary optimization methods demonstrate that the proposed CS–GA algorithm proves to be extremely effective and efficient at locating optimal solutions.  相似文献   

15.
The involvement of Meta-heuristic algorithms in robot motion planning has attracted the attention of researchers in the robotics community due to the simplicity of the approaches and their effectiveness in the coordination of the agents. This study explores the implementation of many meta-heuristic algorithms, e.g. Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO) and Cuckoo Search Algorithm (CSA) in multiple motion planning scenarios. The study provides comparison between multiple meta-heuristic approaches against a set of well-known conventional motion planning and navigation techniques such as Dijkstra’s Algorithm (DA), Probabilistic Road Map (PRM), Rapidly Random Tree (RRT) and Potential Field (PF). Two experimental environments with difficult to manipulate layouts are used to examine the feasibility of the methods listed. several performance measures such as total travel time, number of collisions, travel distances, energy consumption and displacement errors are considered for assessing feasibility of the motion planning algorithms considered in the study. The results show the competitiveness of meta-heuristic approaches against conventional methods. Dijkstra ’s Algorithm (DA) is considered a benchmark solution and Constricted Particle Swarm Optimization (CPSO) is found performing better than other meta-heuristic approaches in unknown environments.  相似文献   

16.
This paper presents a novel two-stage hybrid swarm intelligence optimization algorithm called GA–PSO–ACO algorithm that combines the evolution ideas of the genetic algorithms, particle swarm optimization and ant colony optimization based on the compensation for solving the traveling salesman problem. In the proposed hybrid algorithm, the whole process is divided into two stages. In the first stage, we make use of the randomicity, rapidity and wholeness of the genetic algorithms and particle swarm optimization to obtain a series of sub-optimal solutions (rough searching) to adjust the initial allocation of pheromone in the ACO. In the second stage, we make use of these advantages of the parallel, positive feedback and high accuracy of solution to implement solving of whole problem (detailed searching). To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems from TSPLIB are tested to demonstrate the potential of the proposed two-stage hybrid swarm intelligence optimization algorithm. The simulation examples demonstrate that the GA–PSO–ACO algorithm can greatly improve the computing efficiency for solving the TSP and outperforms the Tabu Search, genetic algorithms, particle swarm optimization, ant colony optimization, PS–ACO and other methods in solution quality. And the experimental results demonstrate that convergence is faster and better when the scale of TSP increases.  相似文献   

17.
In this paper, the algorithmic concepts of the Cuckoo-search (CK), Particle swarm optimization (PSO), Differential evolution (DE) and Artificial bee colony (ABC) algorithms have been analyzed. The numerical optimization problem solving successes of the mentioned algorithms have also been compared statistically by testing over 50 different benchmark functions. Empirical results reveal that the problem solving success of the CK algorithm is very close to the DE algorithm. The run-time complexity and the required function-evaluation number for acquiring global minimizer by the DE algorithm is generally smaller than the comparison algorithms. The performances of the CK and PSO algorithms are statistically closer to the performance of the DE algorithm than the ABC algorithm. The CK and DE algorithms supply more robust and precise results than the PSO and ABC algorithms.  相似文献   

18.
混合优化的贝叶斯网络结构学习   总被引:1,自引:0,他引:1  
从大型数据库中学习网络结构一直是贝叶斯网络学习的难点之一.针对此问题提出了一种混合算法,将粒子群优化法简单且全局寻优能力强的特点,以及遗传算法良好的并行计算能力进行有效的结合,以增加学习的精度和效率.最后以经典的Asia,Cancer网络为实例,并与文中算法进行比较,验证了该算法的有效性.  相似文献   

19.
Some species of females, e.g., chicken, bird, fish etc., might mate with more than one males. In the mating of these polygamous creatures, there is competition between males as well as among their offspring. Thus, male reproductive success depends on both male competition and sperm rivalry. Inspired by this type of sexual life of roosters with chickens, a novel nature-inspired optimization algorithm called Roosters Algorithm (RA) is proposed. The algorithm was modelled and implemented based on the sexual behavior of roosters. 13 well-known benchmark optimization functions and 10 IEEE CEC 2018 test functions are utilized to compare the performance of RA with the performance of well-known algorithms; Standard Genetic Algorithm (SGA), Differential Evolution (DE), Particle Swarm Optimization (PSO), Cuckoo Search (CS) and Grey Wolf Optimizer (GWO). Also, non-parametric statistical tests, Friedman and Wilcoxon Signed Rank Tests, were performed to demonstrate the significance of the results. In 20 of the 23 functions that were tested, RA either offered the best results or offered similar results to other compared algorithms. Thus, in this paper, we not only present a novel nature-inspired algorithm, but also offer an alternative method to the well-known algorithms commonly used in the literature, at least as effective as them.  相似文献   

20.
Particle swarm optimization (PSO), like other population-based meta-heuristics, is intrinsically parallel and can be effectively implemented on Graphics Processing Units (GPUs), which are, in fact, massively parallel processing architectures. In this paper we discuss possible approaches to parallelizing PSO on graphics hardware within the Compute Unified Device Architecture (CUDA™), a GPU programming environment by nVIDIA™ which supports the company’s latest cards. In particular, two different ways of exploiting GPU parallelism are explored and evaluated. The execution speed of the two parallel algorithms is compared, on functions which are typically used as benchmarks for PSO, with a standard sequential implementation of PSO (SPSO), as well as with recently published results of other parallel implementations. An in-depth study of the computation efficiency of our parallel algorithms is carried out by assessing speed-up and scale-up with respect to SPSO. Also reported are some results about the optimization effectiveness of the parallel implementations with respect to SPSO, in cases when the parallel versions introduce some possibly significant difference with respect to the sequential version.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号