首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Alternating graphene (G) and titania (Ti0.91O2) multilayered nanosheets are fabricated using layer‐by‐layer electrostatic deposition followed by UV irradiation. Successful assemblies of graphene oxide (GO) and titania nanosheets in sequence with polyethylenimine as a linker is confirmed by UV–vis absorption and X‐ray diffraction. Photocatalytic reduction of GO into G can be achieved upon UV irradiation. Ultrafast photocatalytic electron transfer between the titania and graphene is demonstrated using femtosecond transient absorption spectroscopy. Efficient exciton dissociation at the interfaces coupled with cross‐surface charge percolation allows efficient photocurrent conversion in the multilayered Ti0.91O2/G films.  相似文献   

2.
Simple, yet versatile, methods to functionalize graphene flakes with metal (oxide) nanoparticles are in demand, particularly for the development of advanced catalysts. Herein, based on light‐induced electrochemistry, a laser‐assisted, continuous, solution route for the simultaneous reduction and modification of graphene oxide with catalytic nanoparticles is reported. Electrochemical graphene oxide (EGO) is used as starting material and electron–hole pair source due to its low degree of oxidation, which imparts structural integrity and an ability to withstand photodegradation. Simply illuminating a solution stream containing EGO and metal salt (e.g., H2PtCl6 or RuCl3) with a 248 nm wavelength laser produces reduced EGO (rEGO, oxygen content 4.0 at%) flakes, decorated with Pt (≈2.0 nm) or RuO2 (≈2.8 nm) nanoparticles. The RuO2–rEGO flakes exhibit superior catalytic activity for the oxygen evolution reaction, requiring a small overpotential of 225 mV to reach a current density of 10 mA cm?2. The Pt–rEGO flakes (10.2 wt% of Pt) show enhanced mass activity for the hydrogen evolution reaction, and similar performance for oxygen reduction reaction compared to a commercial 20 wt% Pt/C catalyst. This simple production method is also used to deposit PtPd alloy and MnOx nanoparticles on rEGO, demonstrating its versatility in synthesizing functional nanoparticle‐modified graphene materials.  相似文献   

3.
Ultrathin MnO2/graphene oxide/carbon nanotube (G/M@CNT) interlayers are developed as efficient polysulfide‐trapping shields for high‐performance Li–S batteries. A simple layer‐by‐layer procedure is used to construct a sandwiched vein–membrane interlayer of thickness 2 µm and areal density 0.104 mg cm?2 by loading MnO2 nanoparticles and graphene oxide (GO) sheets on superaligned carbon nanotube films. The G/M@CNT interlayer provides a physical shield against both polysulfide shuttling and chemical adsorption of polysulfides by MnO2 nanoparticles and GO sheets. The synergetic effect of the G/M@CNT interlayer enables the production of Li–S cells with high sulfur loadings (60–80 wt%), a low capacity decay rate (?0.029% per cycle over 2500 cycles at 1 C), high rate performance (747 mA h g?1 at a charge rate of 10 C), and a low self‐discharge rate with high capacity retention (93.0% after 20 d rest). Electrochemical impedance spectroscopy, cyclic voltammetry, and scanning electron microscopy observations of the Li anodes after cycling confirm the polysulfide‐trapping ability of the G/M@CNT interlayer and show its potential in developing high‐performance Li–S batteries.  相似文献   

4.
A simple method to prepare large‐scale graphene sponges and free‐standing graphene films using a speed vacuum concentrator is presented. During the centrifugal evaporation process, the graphene oxide (GO) sheets in the aqueous suspension are assembled to generate network‐linked GO sponges or a series of multilayer GO films, depending on the temperature of a centrifugal vacuum chamber. While sponge‐like bulk GO materials (GO sponges) are produced at 40 °C, uniform free‐standing GO films of size up to 9 cm2 are generated at 80 °C. The thickness of GO films can be controlled from 200 nm to 1 µm based on the concentration of the GO colloidal suspension and evaporation temperature. The synthesized GO films exhibit excellent transparency, typical fluorescent emission signal, and high flexibility with a smooth surface and condensed density. Reduced GO sponges and films with less than 5 wt% oxygen are produced through a thermal annealing process at 800 °C with H2/Ar flow. The structural flexibility of the reduced GO sponges, which have a highly porous, interconnected, 3D network, as well as excellent electrochemical properties of the reduced GO film with respect to electrode kinetics for the [Fe(CN)6]3?/4? redox system, are demonstrated.  相似文献   

5.
This work proposes a new perovskite solar cell structure by including lithium‐neutralized graphene oxide (GO‐Li) as the electron transporting layer (ETL) on top of the mesoporous TiO2 (m‐TiO2) substrate. The modified work‐function of GO after the intercalation of Li atoms (4.3 eV) exhibits a good energy matching with the TiO2 conduction band, leading to a significant enhancement of the electron injection from the perovskite to the m‐TiO2. The resulting devices exhibit an improved short circuit current and fill factor and a reduced hysteresis. Furthermore, the GO‐Li ETL partially passivates the oxygen vacancies/defects of m‐TiO2 by resulting in an enhanced stability under prolonged 1 SUN irradiation.  相似文献   

6.
The sensing performance of chemical sensors can be achieved not only by modification or hybridization of sensing materials but also through new design in device geometry. The performance of a chemical sensing device can be enhenced from a simple three‐dimensional (3D) chemiresistor‐based gas sensor platform with an increased surface area by forming networked, self‐assembled reduced graphene oxide (R‐GO) nanosheets on 3D SU8 micro‐pillar arrays. The 3D R‐GO sensor is highly responsive to low concentration of ammonia (NH3) and nitrogen dioxide (NO2) diluted in dry air at room temperature. Compared to the two‐dimensional planar R‐GO sensor structure, as the result of the increase in sensing area and interaction cross‐section of R‐GO on the same device area, the 3D R‐GO gas sensors show improved sensing performance with faster response (about 2%/s exposure), higher sensitivity, and even a possibly lower limit of detection towards NH3 at room temperature.  相似文献   

7.
A zeolitic‐imidazolate‐framework (ZIF) nanocrystal layer‐protected carbonization route is developed to prepare N‐doped nanoporous carbon/graphene nano‐sandwiches. The ZIF/graphene oxide/ZIF sandwich‐like structure with ultrasmall ZIF nanocrystals (i.e., ≈20 nm) fully covering the graphene oxide (GO) is prepared via a homogenous nucleation followed by a uniform deposition and confined growth process. The uniform coating of ZIF nanocrystals on the GO layer can effectively inhibit the agglomeration of GO during high‐temperature treatment (800 °C). After carbonization and acid etching, N‐doped nanoporous carbon/graphene nanosheets are formed, with a high specific surface area (1170 m2 g?1). These N‐doped nanoporous carbon/graphene nanosheets are used as the nonprecious metal electrocatalysts for oxygen reduction and exhibit a high onset potential (0.92 V vs reversible hydrogen electrode; RHE) and a large limiting current density (5.2 mA cm?2 at 0.60 V). To further increase the oxygen reduction performance, nanoporous Co‐Nx/carbon nanosheets are also prepared by using cobalt nitrate and zinc nitrate as cometal sources, which reveal higher onset potential (0.96 V) than both commercial Pt/C (0.94 V) and N‐doped nanoporous carbon/graphene nanosheets. Such nanoporous Co‐Nx/carbon nanosheets also exhibit good performance such as high activity, stability, and methanol tolerance in acidic media.  相似文献   

8.
Silk fibroin adsorption at the heterogeneous hydrophobic–hydrophilic surface of graphene oxide (GO) with different degrees of oxidation is addressed experimentally and theoretically. Samples are prepared using various spin‐assisted deposition conditions relevant to assembly of laminated nanocomposites from graphene‐based components, and compared with silicon dioxide (SiO2) as a benchmark substrate. Secondary structure of silk backbones changes as a function of silk fibroin concentration, substrate chemical composition, and deposition dynamics are assessed and compared with molecular dynamic simulations. It is observed that protofibrils form at low concentrations while variance in the deposition speed has little effect on silk secondary structure and morphology. However, balance of nonbonded interactions between electrostatic and van der Waals contributions can lead to silk secondary structure retention on the GO surface. Molecular dynamics simulations of silk fibroin at different surfaces show that strong van der Waals interactions play a pivotal role in losing and disrupting secondary structure on graphene and SiO2 surfaces. Fine tuning silk fibroin structure on heterogeneous graphene‐based surfaces paves the way toward development of biomolecular reinforcement for biopolymer–graphene laminated nanocomposites.  相似文献   

9.
Graphite oxide (GO) has received extensive interest as a precursor for the bulk production of graphene‐based materials. Here, the highly energetic nature of GO, noted from the self‐propagating thermal deoxygenating reaction observed in solid state, is explored. Although the resulting graphene product is quite stable against combustion even in a natural gas flame, its thermal stability is significantly reduced when contaminated with potassium salt by‐products left from GO synthesis. In particular, the contaminated GO becomes highly flammable. A gentle touch with a hot soldering iron can trigger violent, catastrophic, total combustion of such GO films, which poses a serious fire hazard. This highlights the need for efficient sample purification methods. Typically, purification of GO is hindered by its tendency to gelate as the pH value increases during rinsing. A two‐step, acid–acetone washing procedure is found to be effective for suppressing gelation and thus facilitating purification. Salt‐induced flammability is alarming for the fire safety of large‐scale manufacturing, processing, and storage of GO materials. However, the energy released from the deoxygenation of GO can also be harnessed to drive new reactions for creating graphene‐based hybrid materials. Through such domino‐like reactions, graphene sheets decorated with metal and metal oxide particles are synthesized using GO as the in situ power source. Enhanced electrochemical capacitance is observed for graphene sheets loaded with RuO2 nanoparticles.  相似文献   

10.
An ex situ strategy for fabrication of graphene oxide (GO)/metal oxide hybrids without assistance of surfactant is introduced. Guided by this strategy, GO/Al2O3 hybrids are fabricated by two kinds of titration methods in which GO and Al2O3 colloids are utilized as titrant for hybrids of low and high GO content respectively. After sintered by spark plasma sintering, few‐layer graphene (FG)/Al2O3 nanocomposites are obtained and GO is well reduced to FG simultaneously. A percolation threshold as low as 0.38 vol.% is achieved and the electrical conductivity surpasses 103 Sm?1 when FG content is only 2.35 vol.% in FG/Al2O3 composite, revealing the homogeneous dispersion and high quality of as‐prepared FG. Furthermore, it is found that the charge carrier type changes from p‐ to n‐type as graphene content becomes higher. It is deduced that this conversion is related to the doping effect induced by Al2O3 matrix and is thickness‐dependent with respect to FG.  相似文献   

11.
Graphene papers have a potential to overcome the gap from nanoscale graphene to real macroscale applications of graphene. A unique process for preparation of highly conductive graphene thin paper by means of Ar+ ion irradiation of graphene oxide (GO) papers, with carbon/oxygen ratio reduced to 100:1, is presented. The composition of graphene paper in terms of carbon/oxygen ratio and in terms of types of individual oxygen‐containing groups is monitored throughout the process. Angle‐resolved high resolution X‐ray photoelectron spectroscopy helps to investigate the depth profile of carbon and oxygen within reduced GO paper. C/O ratios over 100 on the surface and 40 in bulk material are observed. In order to bring insight to the processes of oxygen removal from GO paper by low energy Ar+ ion bombardment, the gases released during the irradiation are analyzed by mass spectroscopy. It is proven that Ar+ ion beam can be applied as a technique for fabrication of highly reduced graphene papers with high conductivities. Such highly conductive graphene papers have great potential to be used in application for construction of microelectronic and sensor devices.  相似文献   

12.
A crumpled configuration of graphene is desirable for preventing irreversible stacking between individual nanosheets, which can be a major hurdle toward its widespread application. Herein a sea‐urchin‐shaped template approach is introduced for fabricating highly crumpled graphene balls in bulk quantities with a simple process. Simultaneous chemical etching and reduction process of graphene oxide (GO)‐encapsulated iron oxide particles results in dissolution of the core template with spiky morphology and conversion of the outer GO layers into reduced GO layers with increased hydrophobicity which remain in contact with the spiky surface of the template. After completely etching, the outer graphene layers are fully compressed into the crumpled form along with decrease in total volume by etching. The crumpled balls exhibit significantly larger surface area and good water‐dispersion stability than those of stacked reduced GO or other crumple approaches, even though they also show comparable electrical conductivity. Furthermore, they are easily assembled into 3D macroporous networks without any binders through typical processes such as solvent casting or compression molding. The graphene networks with less pore volume still have the crumpled morphology without sacrificing the properties regardless of the assembly processes, producing a promising active electrode material with high gravimetric and volumetric energy density for capacitive energy storage.  相似文献   

13.
A green, simple, and cost effective electrochemical method to synthesize pure graphene oxide (GO) and graphene nanosheets (GNs) using pencil in ionic liquid medium is reported. The morphology and microstructure of prepared GNs and GO are examined using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X‐ray diffraction (XRD), and Raman spectroscopy; the experiments confirm the formation of high quality graphene. The synthesized GO is used for the real‐time and label‐free surface plasmon resonance (SPR) sensing of the biological warfare agent Salmonella typhi.  相似文献   

14.
The lack of cost effective, industrial‐scale production methods hinders the widespread applications of graphene materials. In spite of its applicability in the mass production of graphene flakes, arc discharge has not received considerable attention because of its inability to control the synthesis and heteroatom doping. In this study, a facile approach is proposed for improving doping efficiency in N‐doped graphene synthesis through arc discharge by utilizing anodic carbon fillers. Compared to the N‐doped graphene (1–1.5% N) synthesized via the arc process according to previous literature, the resulting graphene flakes show a remarkably increased doping level (≈3.5% N) with noticeable graphitic N enrichment, which is rarely achieved by the conventional process, while simultaneously retaining high turbostratic crystallinity. The electrolyte ion storage of synthesized materials is examined in which synthesized N‐doped graphene material exhibits a remarkable area normalized capacitance of 63 µF cm?2. The surprisingly high areal capacitance, which is superior to that of most carbon materials, is attributed to the synergistic effect of extrinsic pseudocapacitance, high crystallinity, and abundance of exposed graphene edges. These results highlight the great potentials of N‐doped graphene flakes produced by arc discharge in graphene‐based supercapacitors, along with well‐studied active exfoliated graphene and reduced graphene oxide.  相似文献   

15.
Defects‐controlled friction in graphene is of technological importance in many applications, but the underlying mechanism remains a subject of debate. Here it is shown that, during the controlled oxidation in oxygen plasma and subsequent reduction induced by high‐energy photons, the contact friction in chemical vapor deposition grown graphene is dominantly determined by the vacancies formed instead of the bonding with add‐atoms. This effect is attributed to the vacancy‐enhanced out‐of‐plane deformation flexibility in graphene, which tends to produce large puckering of graphene sheet near the contact edge and thus increases the effective contact area. Modified graphene with large contact friction has a large density of defects, but remains a good electrical conductor, in which the carrier transport is strongly affected by quantum localization effects even at room temperature. It is also found that the oxidation process in graphene is substrate‐sensitive. Comparing to monolayer graphene on SiO2 substrate, the oxidation process progresses much faster when the substrate is SrTiO3, while bilayer graphene exhibits great oxidation resistance on both substrates. The collection of observations provides important information for tailoring the mechanical, electrical, and chemical properties of graphene through selected defects and substrates.  相似文献   

16.
Similar to the paper‐making process, the efficient flame retardant graphene paper is conveniently obtained by using graphene oxide (GO) and hexachlorocyclotriphosphazene (HCCP) aqueous pulp. The “paper pulp” can also conceivably be used as ink to make other hydrophilic films become flame retardant paper. Further, the as‐prepared reduced GO‐HCCP paper (RGO‐HCCP paper), compared with GO‐HCCP paper, can maintain its intact structure for a longer time in an ethanol flame. As a consequence of these preparation methods, the bearing temperature of the as‐prepared graphene papers shows a significant increase.  相似文献   

17.
Reduced graphene oxide (RGO) is an important graphene derivative for applications in photonics and optoelectronics because of the band gap created by chemical oxidation. However, most RGO materials made by chemically exfoliated graphite oxide are 2D flakes. Their optoelectronic performance deteriorates significantly as a result of weak light‐matter interaction and poor electrical contact between stacking flakes. Here we report a bicontinuous 3D nanoporous RGO (3D np‐RGO) with high optoelectronic performance for highly sensitive photodetectors. 3D np‐RGO demonstrates a over 40 times higher light absorption than monolayer graphene materials and at least two orders of magnitude higher electron mobility than conventional RGO from discrete RGO flakes. The np‐RGO with an optimal reduction state shows ultrahigh photoresponse of 3.10 3 104 A W?1 at room temperature, approximately four orders of magnitude higher than graphene and other graphene derivatives at similar levels of light intensity radiations, and the excellent external quantum efficiency of 1.04 3 107% better than commercial silicon photodetector. The ultrahigh capability of conversing photons to photocurrent originates from strongly enhanced light absorption, facilitated photocarrier transport, and tunable oxygenous defects and reduction states in the 3D interconnected bicontinuous RGO network.  相似文献   

18.
Stable graphene oxide monoliths (GOMs) have been fabricated by exploiting epoxy groups on the surface of graphene oxide (GO) in a ring opening reaction with amine groups of poly(oxypropylene) diamines (D400). This method can rapidly form covalently bonded GOM with D400 within 60 s. FTIR and XPS analyses confirm the formation of covalent C‐N bonds. Investigation of the GOM formation mechanism reveals that the interaction of GO with a diamine cross‐linker can result in 3 different GO assemblies depending on the ratio of D400 to GO, which have been proven both by experiment and molecular dynamics calculations. Moreover, XRD results indicate that the interspacial distance between GO sheets can be tuned by varying the diamine chain length and concentration. We demonstrate that the resulting GOM can be moulded into various shapes and behaves like an elastic hydrogel. The fabricated GOM is non‐cyctotoxic to L929 cell lines indicating a potential for biomedical applications. It could also be readily converted to graphene monolith upon thermal treatment. This new rapid and facile method to prepare covalently cross‐linked GOM may open the door to the synthesis and application of next generation multifunctional 3D graphene structures.  相似文献   

19.
The first reduction methodology, compatible with flexible, temperature‐sensitive substrates, for the production of reduced spin‐coated graphene oxide (GO) electrodes is reported. It is based on the use of a laser beam for the in situ, non‐thermal, reduction of spin‐coated GO films on flexible substrates over a large area. The photoreduction process is one‐step, facile, and is rapidly carried out at room temperature in air without affecting the integrity of the graphene lattice or the flexibility of the underlying substrate. Conductive graphene films with a sheet resistance of as low as 700 Ω sq?1 and transmittance of 44% can be obtained, much higher than can be achieved for flexible layers reduced by chemical means. As a proof of concept of our technique, laser‐reduced GO (LrGO) films are utilized as transparent electrodes in flexible, bulk heterojunction, organic photovoltaic (OPV) devices, replacing the traditional ITO. The devices displayed a power‐conversion efficiency of 1.1%, which is the highest reported so far for OPV device incorporating reduced GO as the transparent electrode. The in situ non‐thermal photoreduction of spin‐coated GO films creates a new way to produce flexible functional graphene electrodes for a variety of electronic applications in a process that carries substantial promise for industrial implementation.  相似文献   

20.
Graphene‐based textiles show promise for next‐generation wearable electronic applications due to their advantages over metal‐based technologies. However, current reduced graphene oxide (rGO)‐based electronic textiles (e‐textiles) suffer from poor electrical conductivity and higher power consumption. Here, highly conductive, ultraflexible, and machine washable graphene‐based wearable e‐textiles are reported. A simple and scalable pad?dry?cure method with subsequent roller compression and a fine encapsulation of graphene flakes is used. The graphene‐based wearable e‐textiles thus produced provide lowest sheet resistance (≈11.9 Ω sq?1) ever reported on graphene e‐textiles, and highly conductive even after 10 home laundry washing cycles. Moreover, it exhibits extremely high flexibility, bendability, and compressibility as it shows repeatable response in both forward and backward directions before and after home laundry washing cycles. The scalability and multifunctional applications of such highly conductive graphene‐based wearable e‐textiles are demonstrated as ultraflexible supercapacitor and skin‐mounted strain sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号