首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work reports the use of acrylated fatty acid methyl ester (AFAME) as a biomonomer for the synthesis of bio‐based hybrid magnetic particles poly(styrene‐co‐AFAME)/γ‐Fe2O3 produced by miniemulsion polymerization. Poly(styrene‐co‐AFAME)/γ‐Fe2O3 can be tailored for use in various fields by varying the content of AFAME. The strategy employed is to encapsulate superparamagnetic iron oxide nanoparticles (SPIONs) as γ‐Fe2O3 into a styrene/AFAME‐based copolymer matrix. Raman spectroscopy is employed to ensure the formation of the SPIONs (γ‐Fe2O3) obtained by a co‐precipitation technique followed by oxidation of Fe3O4. The functionalization of SPIONs with oleic acid (OA) is carried out to increase the SPIONs–monomer affinity. The presence of OA on the surface of γ‐Fe2O3 is certified by identification of main absorption bands by fourier‐transform infrared spectroscopy (FTIR). Thermal analysis (differential thermogravimetry/differential thermo analysis and differential scanning calorimetry) results of poly(styrene‐co‐AFAME)/γ‐Fe2O3 show an increase in AFAME content leading to a lower copolymer glass transition temperature (T g). Dynamic light scattering (DLS) measurements result in poly(styrene‐co‐AFAME)/γ‐Fe2O3 particles with diameter in the range of 100–150 nm. It is also observed by transmission electron microscopy (TEM) and cryo‐TEM techniques that γ‐Fe2O3 particles are successfully encapsulated into the poly(styrene‐co‐AFAME) matrix.  相似文献   

2.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

3.
The in situ polymerization of pyrrole was carried out in the presence of γ‐Fe2O3 to synthesize polypyrrole/γ‐Fe2O3 composites by a chemical oxidation method. The polypyrrole/γ‐Fe2O3 composites were synthesized with various compositions, including 10, 20, 30, 40, and 50 wt % γ‐Fe2O3 in pyrrole. The polypyrrole/γ‐Fe2O3 composites were characterized with X‐ray diffractometry and infrared spectroscopy. The surface morphology of these composites was studied with scanning electron microscopy. The direct‐current conductivity was studied from 40 to 200°C. The dimensions of the γ‐Fe2O3 particles in the matrix had a greater influence on the conductivity values. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2797–2801, 2007  相似文献   

4.
Magnetic and conducting Fe3O4–polypyrrole nanoparticles with core‐shell structure were prepared in the presence of Fe3O4 magnetic fluid in aqueous solution containing sodium dodecylbenzenesulfonate (NaDS) as a surfactant and dopant. Both the conductivity and magnetization of the composites depend strongly on the Fe3O4 content and the doping degree. With increase of Fe3O4 content in the composite, the conductivity at room temperature decreases, but the saturated magnetization and coercive force increase. Transmission electron microscopy (TEM) images of Fe3O4 and Fe3O4–polypyrrole particles show almost spherical particles with diameters ranging from 20 to 30 and 30 to 40 nm, respectively. The thermal stability of Fe3O4–polypyrrole composites is higher than that of pure polypyrrole. Studies of IR, UV–visible and X‐ray photoelectron spectroscopy (XPS) spectra suggest that the increased thermal stability may be due to interactions between Fe3O4 particles and polypyrrole backbone. Copyright © 2003 Society of Chemical Industry  相似文献   

5.
Chemical and thermal characterization of poly(d ,l ‐lactide‐co‐glycolide) (PLGA) composites filled with hydroxyapatite (HA) or carbon nanotubes (CNT) were evaluated by infrared spectroscopy, differential scanning calorimetry, thermogravimetry, and dynamic–mechanical–thermal analysis. The morphology and distribution of the nanoparticles were studied by transmission electron microscopy. The composites were prepared by solvent casting using 30% HA or 1, 3, and 5% of pristine and functionalized CNT as nanoparticles and PLGA 75:25 and PLGA 50:50 as copolymer matrix. The Coats–Redfern and E2 function methodologies were used to calculate the reaction order and the activation energy (Ea) of the thermal degradation process. It was found that the addition of nanoparticles increased the glass transition temperature (Tg) of the composites. Also, higher degradation temperatures and Ea values were obtained for PLGA–HA composites and compared with the neat copolymer, and the opposite behavior was exhibited by PLGA–CNT composites. The thermal and mechanical properties were highly dependent on the morphology and dispersion of the filler. The functionalization process of CNT promoted, to some extent, a better distribution and dispersion of CNT into the matrix, and these composites exhibited a slight enhancement on storage modulus. On the other hand, PLGA–HA composites showed a good dispersion but no improvement on the storage modulus below Tg. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
Magnetic Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles were prepared by a novel and simple method: anthranilic acid assisted polymerization. The synthetic strategy involved two steps. First, Fe3O4 nanoparticles capped by anthranilic acid were obtained by a chemical precipitation method, and then the aniline and oxidant were added to the modified Fe3O4 nanoparticles to prepare well‐dispersed Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles. Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles exhibited a superparamagnetic behavior (i.e., no hysteresis loop) and high‐saturated magnetization (Ms = 21.5 emu/g). The structure of the composite was characterized by Fourier‐transform infrared spectra, X‐ray powder diffraction patterns, and transmission electron microscopy, which proved that the Fe3O4–poly(aniline‐coo‐anthranilic acid) nanoparticles were about 20 nm. Moreover, the thermal properties of the composite were evaluated by thermogravimetric analysis, and it showed excellent thermal stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1666–1671, 2006  相似文献   

7.
《Polymer Composites》2017,38(12):2881-2888
The aim of this study was to incorporate nanoscale Fe3O4 particles into a poly‐l ‐lactide (PLLA) matrix to fabricate a magnetic and biodegradable composite. The physical and osteogenic functions of this material were tested. Injection molding was used to fabricate four nano‐Fe3O4/PLLA composites with Fe3O4 mix ratios of 0%, 20%, 30%, and 40% (w/w). X‐ray diffraction and hysteresis loop tests were performed to evaluate the physical properties of the nano‐Fe3O4/PLLA composites. Tensile strength tests showed that the progressive addition of nano‐Fe3O4 particles to the PLLA matrix results in higher elastic modulus and lower tensile strength. Images from scanning electron microscopy demonstrated that osteoblasts cultured on the 20% nano‐Fe3O4/PLLA surface exhibited abundant filaments, which are a morphologic characteristic of osteoblastic differentiation. These results suggest that the 20% nano‐Fe3O4/PLLA composite used in this study has the potential for future tissue engineering applications. POLYM. COMPOS., 38:2881–2888, 2017. © 2016 Society of Plastics Engineers  相似文献   

8.
“Grafting from” surface‐initiated nitroxide‐mediated radical polymerization (SI‐NMRP) techniques were used to synthesize poly[styrene‐co‐(maleic anhydride)] copolymer brushes from the Fe3O4 surfaces. Well‐defined polymer chains were grown from the Fe3O4 surfaces to yield particles with a Fe3O4 core and a polymer outer layer. The observed narrow molecular weight distributions (Mw/Mn), linear kinetic plots and linear plots of molecular weight (Mn) versus conversion for the free polymer indicated that the chain growth from the Fe3O4 surface was a controlled process by adding an excess of 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO). The modified nanoparticles were subjected to detailed characterization using XRD, TEM, FT‐IR, and TGA. The analyses of vibration sample magnetometer (VSM) verified that the nanoparticles owned good magnetic property. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

9.
In this study, the novel polyarylene ether nitrile containing carboxyl groups (CPEN)/Fe3O4 hybrids were synthesized via the solvent‐thermal route. The SEM and TEM images showed that the surface of functionalized Fe3O4 hybrids (CPEN‐f‐Fe3O4) became rough and coated with a thin polymer layer successfully. Chemical bonds were formed between the carboxyl groups and Fe3O4 spheres, which were characterized by FTIR and XRD. Series of PEN composite films were prepared through solution‐casting method with different contents of CPEN‐f‐Fe3O4 hybrids and raw Fe3O4 spheres. The SEM images showed that the CPEN‐f‐Fe3O4 hybrids became much more dispersible and compatible in PEN matrix than that of raw Fe3O4 spheres, which was further confirmed by rheological study. The magnetic analysis showed that the saturation magnetization of composites films increased with the increase of CPEN‐f‐Fe3O4 hybrids loading content. The results of thermogravimetric and mechanical study exhibited that the composite films had good thermal stability and mechanical property. POLYM. COMPOS., 36:1325–1334, 2015. © 2014 Society of Plastics Engineers  相似文献   

10.
We present a template‐free synthesis of Fe3O4/SiOC(H) nanocomposites with in situ formed Fe3O4 nanoparticles with a size of about 50 nm embedded in a nanoporous SiOC(H) matrix obtained via a polymer‐derived ceramic route. Firstly, a single‐source precursor (SSP) was synthesized by the reaction of allylhydridopolycarbosilane (AHPCS) with Fe‐acetylacetonate [Fe(acac)3] at 140°C. The SSP was heat‐treated at 170°C to generate Fe3O4 nanocrystals in the cross‐linked polymeric matrix. Subsequently, the SSP was pyrolyzed at 600°C–700°C in argon atmosphere to yield porous Fe3O4/SiOC(H) nanocomposites with the high BET surface area up to 390 m2/g, a high micropore surface area of 301 m2/g, and a high micropore volume of 0.142 cm3/g. The Fe‐free SiOC(H) ceramic matrix derived from original AHPCS is nonporous. The in situ formation of Fe3O4 nanoparticles embedded homogeneously within a nanoporous SiOC(H) matrix shows significantly enhanced catalytic degradation of xylene orange in aqueous solution with H2O2 as oxidant as compared with pure commercial Fe3O4 nanoparticles.  相似文献   

11.
Ultrafine well‐dispersed Fe3O4 magnetic nanoparticles were directly prepared in aqueous solution using controlled coprecipitation method. The synthesis of Fe3O4/poly (2‐acrylamido‐2‐methylpropane sulfonic acid) (PAMPS), Fe3O4/poly (acrylamide‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AM‐co‐AMPS) and Fe3O4/poly (acrylic acid‐co‐2‐acrylamido‐2‐methylpropane sulfonic acid) poly(AA‐co‐AMPS) ‐core/shell nanogels are reported. The nanogels were prepared via crosslinking copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid, acrylamide and acrylic acid monomers in the presence of Fe3O4 nanoparticles, N,N′‐methylenebisacrylamide (MBA) as a crosslinker, N,N,N′,N′‐tetramethylethylenediamine (TEMED) and potassium peroxydisulfate (KPS) as redox initiator system. The results of FTIR and 1H‐NMR spectra indicated that the compositions of the prepared nanogels are consistent with the designed structure. X‐ray powder diffraction (XRD) and transmission electron microscope (TEM) measurements were used to determine the size of both magnetite and stabilized polymer coated magnetite nanoparticles. The data showed that the mean particle size of synthesized magnetite (Fe3O4) nanoparticles was about 10 nm. The diameter of the stabilized polymer coated Fe3O4 nanogels ranged from 50 to 250 nm based on polymer type. TEM micrographs proved that nanogels possess the spherical morphology before and after swelling. These nanogels exhibited pH‐induced phase transition due to protonation of AMPS copolymer chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
The shear rheological properties of polystyrene (PS)/nano‐CaCO3 composites were studied to determine the plasticization of nano‐CaCO3 to PS. The composites were prepared by melt extrusion. A poly(styrene–butadiene–styrene) triblock copolymer (SBS), a poly(styrene–isoprene–styrene) triblock copolymer (SIS), SBS‐grafted maleic anhydride (SBS–MAH), and SIS‐grafted maleic anhydride were used as modifiers or compatibilizers. Because of the weak interaction between CaCO3 and the PS matrix, the composites with 1 and 3 phr CaCO3 loadings exhibited apparently higher melt shear rates under the same shear stress with respect to the matrix polymer. The storage moduli for the composites increased with low CaCO3 concentrations. The results showed that CaCO3 had some effects on the compatibility of PS/SBS (or SBS–MAH)/CaCO3 composites, in which SBS could effectively retard the movement of PS chain segments. The improvement of compatibility, due to the chemical interaction between CaCO3 and the grafted maleic anhydride, had obvious effects on the rheological behavior of the composites, the melt shear rate of the composites decreased greatly, and the results showed that nano‐CaCO3 could plasticize the PS matrix to some extent. Rheological methods provided an indirect but useful characterization of the composite structure. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

13.
Chitosan‐linked Fe3O4 (CL‐Fe3O4) is facilely prepared by electrostatic interactions between citrate‐capped Fe3O4 (C‐Fe3O4) (with negatively charged carboxylate groups) and chitosan oligosaccharide lactate (with positively charged amine groups), and utilized as anodes for lithium‐ion batteries. Inert‐atmosphere calcination of CL‐Fe3O4 at 400°C leads to the formation of chitosan‐tethered iron oxide composites (Fe2O3@chitosan) with an antisintering porous structure. As the calcination temperature changes from 400°C to 700°C, the size of primary particles increases from ca. 40 nm to ca. 100 nm, and the surface area decreases from 57.8 m2/g to 10.9 m2/g. The iron oxide composites exhibit a high discharge capacity and good rate performance. At a current density of 0.1 C after 50 cycles, Fe2O3@chitosan (400°C) exhibits a higher retention capacity of 732 mAh/g than those (544 and 634 mAh/g) of chitosan‐free Fe2O3 and Fe2O3@chitosan (700°C), respectively. The high performance of Fe2O3@chitosan (400°C) is attributed to the antisintering porous structure with high surface area that is beneficial for facilitating ion transport, demonstrating a useful chemical strategy for the direct formation of porous electrode materials at low calcination temperature.  相似文献   

14.
In this work, flexible three phase composite films were prepared with surface functionalized multi‐walled carbon nanotubes (f‐MWCNTs) and bismuth ferrite (BiFeO3;BFO) particles embedded into the poly(vinylidene fluoride) (PVDF) matrix via solution casting technique. The properties and the microstructure of prepared composites were investigated using an impedance analyzer and field emission scanning electron microscope. The micro‐structural study showed that the f‐MWCNTs and BFO particles were dispersed homogeneously within the PVDF matrix, nicely seated on the floor of the f‐MWCNTs separately. The dielectric measurement result shows that the resultant composites with excellent dielectric constant (≈96) and relatively lower dielectric loss (<0.23 at 100 Hz). Furthermore, the percolation theory is explored to explain the dielectric properties of the resultant composites. It says that the percolation threshold of fMWCNTs = 0.9 wt % and the enhancement of the dielectric constant of the composite was also discussed. In addition, the remnant polarization of the un‐poled PVDF‐BFO‐f‐MWCNTs composites (2Pr ~1.34 µC/cm2 for 1.1 wt % of f‐MWCNTs) is also improved. These three phase composites provide a new insight to fabricate flexible and enhanced dielectric properties as a promising application in modern electrical and electronic devices. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46002.  相似文献   

15.
Stabilized and dispersed superparamagnetic porous nanogels based on sodium acrylate (AA‐Na) and acrylamide (AM) in a surfactant‐free aqueous system were synthesized via solution polymerization at room temperature. The formation of magnetite nanoparticles was confirmed and their properties characterized using Fourier transform infrared spectroscopy. Extensive characterization of the magnetic polymer particles using transmission electron microscopy (TEM), dynamic light scattering and zeta potential measurements revealed that Fe3O4 nanoparticles were incorporated into the shells of poly(AM/AA‐Na). The average particle size was 5–8 nm as determined from TEM. AM/AA‐Na nanoparticles with a diameter of about 11 nm were effectively assembled onto the negatively charged surface of the as‐synthesized Fe3O4 nanoparticles via electrostatic interaction. Crosslinked magnetite nanocomposites were prepared by in situ development of surface‐modified magnetite nanoparticles in an AM/AA‐Na hydrogel. Scanning electron microscopy was used to study the surface morphology of the prepared composites. The morphology, phase composition and crystallinity of the prepared nanocomposites were characterized. Atomic force microscopy and argon adsorption–desorption measurements of Fe3O4.AM/AA indicated that the architecture of the polymer network can be a hollow porous sphere or a solid phase, depending on the AA‐Na content. © 2013 Society of Chemical Industry  相似文献   

16.
Recently, a new type of phosphazene‐containing material, poly[cyclotriphosphazene‐co‐(4,4′‐sulfonyldiphenol)] (PZS), was successfully prepared. PZS materials including PZS nanotubes, PZS nanofibers and PZS microspheres show excellent thermal stability, biocompatibility and biodegradability. Moreover, PZS‐containing materials such as silver nanowire/PZS, carbon nanotube/PZS and Fe3O4/PZS nanotubes have also been prepared. Therefore, we explored a specific method for the functionalization of these PZS and PZS‐containing materials to expand their scope of application. As a model of various PZS and PZS‐containing materials, PZS microspheres (PZSMs) were functionalized via surface‐initiated atom transfer radical polymerization (ATRP). Polymerization of styrene occurred at surface sites covalently derivatized with ATRP initiators to form PZSM–polystyrene. The number‐average molecular weight (Mn) of grafted polymer chains could be well controlled. Furthermore, PZSM–polystyrene was still active for further block copolymerization of methyl methacrylate. Both styrene‐ and acrylate‐type monomers could be directly polymerized or block copolymerized from the surface of PZS and PZS‐containing materials using surface‐initiated ATRP. Mn of grafted polymer chains could be well controlled. This facile strategy could pave the way for a wider range of applications of these materials. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
Poly(ethylene‐co‐vinyl acetate) (EVA)/magnetite (Fe3O4) nanocomposite was prepared with different loading of Fe3O4 nanoparticles. The mixing and compounding were carried out on a two‐roll mixing mill and the sheets were prepared in a compression‐molding machine. The effect of loading of nanoparticles in EVA was investigated thoroughly by different characterization technique such as transmission electron microscopy (TEM), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), limiting oxygen index (LOI), and technological properties. TEM analysis showed the uniform dispersion of filler in the polymer matrix and the dispersion of filler decreased with increase in filler content. XRD of the nanocomposite revealed the more ordered structure of the polymer chain. An appreciable increase in glass transition temperature was observed owing to the restricted mobility of Fe3O4‐filled EVA nanocomposite. TGA and flame resistance studies indicated that the composites attain better thermal and flame resistance than EVA owing to the interaction of filler and polymer segments. Mechanical properties such as tensile strength, tear resistance, and modulus were increased for composites up to 7 phr of filler, which is presumably owing to aggregation of Fe3O4 nanoparticle at higher loading. The presence of Fe3O4 nanoparticles in the polymer matrix reduced the elongation at break and impact strength while improved hardness of the composite than unfilled EVA. The change in technological properties had been correlated with the variation of polymer–filler interaction estimated from the swelling behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40116.  相似文献   

18.
Novel thermally and magnetically dual‐responsive mesoporous silica nanoparticles [magnetic mesoporous silica nanospheres (M‐MSNs)–poly(N‐isopropyl acrylamide) (PNIPAAm)] were developed with magnetic iron oxide (Fe3O4) nanoparticles as the core, mesoporous silica nanoparticles as the sandwiched layer, and thermally responsive polymers (PNIPAAm) as the outer shell. M‐MSN–PNIPAAm was initially used to control the release of sophoridine. The characteristics of M‐MSN–PNIPAAm were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, thermogravimetry, N2 adsorption–desorption isotherms, and vibrating specimen magnetometry analyses. The results indicate that the Fe3O4 nanoparticles were incorporated into the M‐MSNs, and PNIPAAm was grafted onto the surface of the M‐MSNs via precipitation polymerization. The obtained M‐MSN–PNIPAAm possessed superparamagnetic characteristics with a high surface area (292.44 m2/g), large pore volume (0.246 mL/g), and large mesoporous pore size (2.18 nm). Sophoridine was used as a drug model to investigate the loading and release properties at different temperatures. The results demonstrate that the PNIPAAm layers on the surface of M‐MSN–PNIPAAm effectively regulated the uptake and release of sophoridine. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40477.  相似文献   

19.
Nanosized Fe2O3 particles (nano‐Fe2O3) with two shapes (tetrakaidecahedral and grainy) were synthesized by hydrothermal methods. The morphologies and structures were characterized using a combination of experimental techniques including X‐ray diffraction (XRD) and scanning electron microscopy (SEM). Two composites containing CL‐20 (hexanitrohexaazaisowurtzitane, HNIW) and tetrakaidecahedral nano‐Fe2O3 [nmT‐Fe2O3/CL‐20] or grainy nano‐Fe2O3/CL‐20 (nmG‐Fe2O3/CL‐20) were prepared. The thermal behaviors of the two composites and pure CL‐20 were investigated using differential scanning calorimetry (DSC). Non‐isothermal decomposition kinetic parameters and the thermal decomposition mechanism of the two composites and CL‐20 were obtained. The apparent activation energy (Ea) of the main thermal decomposition reaction of CL‐20, nmT‐Fe2O3/CL‐20 and nmG‐Fe2O3/CL‐20 are 181.94, 179.17, and 176.18 kJ mol−1, respectively. The thermal decomposition mechanism of CL‐20 as well as nmT‐Fe2O3/CL‐20 was controlled by the Avrami‐Erofeev equation (n=2/5) assumed as random nucleation and subsequent growth, while, the reaction mechanism of the composite nmG‐Fe2O3/CL‐20 was controlled by the Mample Power law (n=1/2). The reason for this difference may be due to the different morphology and particle size of the two nano‐Fe2O3 particles.  相似文献   

20.
We have studied the temperature‐dependent transport and magnetic properties of the nanocomposites, containing varied amounts of CoFe2O4, NiFe2O4, and Fe3O4 nanoparticles embedded in the conducting poly(3,4‐ethylenedioxythiophene) or PEDOT matrix, in the temperature range 77–300 K. Resistivities of all the composites, including pure PEDOT follows the Mott VRH relation ρ = ρ0 T−1/4 over the studied temperature range. This suggests that hopping is the mechanism of transport in these systems. Plots of (lnρ − lnρ0)/A as a function of temperature for all the studied samples are found to collapse on a single curve. Although, the conduction mechanism does not change with nanoparticle inclusions in the polymer matrix, the hopping parameters change in the nanocomposites. Magnetic studies of ferrite nanoparticles and nanocomposites show signature of superparamagnetic blocking, with a distribution of particle size. The spin structure on the surface of any particle is different from that of the core. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号