首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A carbon fiber/polyhedral oligomeric silsesquioxane/carbon nanotube (CF–POSS–CNT) hybrid reinforcement was prepared by grafting CNTs onto the carbon fiber surface using octaglycidyldimethylsilyl POSS as the linkage in an attempt to improve the interfacial properties between carbon fibers and an epoxy matrix. X-ray photoelectron spectroscopy, scanning electron microscopy, dynamic contact angle analysis and single fiber tensile testing were performed to characterize the hybrid reinforcements. Interlaminar shear strength (ILSS), impact toughness, dynamic mechanical analysis and force modulation atomic force microscopy were carried out to investigate the interfacial properties of the composites. Experimental results show that POSS and CNTs are grafted uniformly on the fiber surface and significantly increase the fiber surface roughness. The polar functional groups and surface energy of carbon fibers are obviously increased after the modification. Single fiber tensile testing results demonstrate that the functionalization does not lead to any discernable decrease in the fiber tensile strength. Mechanical property test results indicate the ILSS and impact toughness are enhanced. The storage modulus and service temperature increase by 11 GPa and 17 °C, respectively. POSS and CNTs effectively enhance the interfacial adhesion of the composites by improving resin wettability, increasing chemical bonding and mechanical interlocking.  相似文献   

2.
Carbon fiber‐reinforced epoxy composites, with incorporated carboxylic multiwall carbon nanotubes (CNTs), were prepared using vacuum‐assisted resin infusion (VARI) molding, and the in‐plane and out‐of‐plane properties, including mode‐I (GIc) and mode‐II (GIIc) interlaminar fracture toughness, interlaminar shear strength (ILSS), tensile, and flexural properties were measured. A novel spraying technique, which sprays a kind of epoxy resin E20 with high viscosity after spraying the CNTs, was adopted to deposit the CNTs on the surface of carbon fiber fabric. The E20 was used to anchor CNTs on the fabric surface, avoiding that the deposited CNTs were removed by the infusing resin during VARI process. The spraying processing, including spraying amount and spraying sequence, was optimized based on the distribution of CNTs on the fibers. After that, three composite specimen groups were fabricated using different carbon fiber fabrics, including as‐received, CNT‐deposited with E20, and CNT‐deposited without E20. The effects of CNTs on the processing quality and mechanical properties of carbon fiber‐reinforced polymer composites were studied. The experimental results show that all studied laminates have uniform thickness with designed values and no obvious defects form inside the laminates. Compared with the composite without CNTs, depositing CNTs with E20 increases by 24% in the average propagation GIc, by 11% in the propagation GIIc and by 12% in the ILSS, while it preserves the in‐plane mechanical properties, However, depositing CNTs without E20 reduces interlaminar fracture toughness. These phenomena are attributed to the differences in the distribution of CNTs and the fiber/matrix interfacial bonding for different spraying processing. POLYM. COMPOS., 2013. © 2012 Society of Plastics Engineers  相似文献   

3.
Grafting carbon nanotubes (CNTs) directly on carbon fibers represents a promising approach in order to strengthen the weak interface between carbon fibers and polymer matrix in carbon fiber reinforced polymer composites (CFRCs). We have carried out direct growth of CNTs on carbon fibers by using two different catalytic chemical vapor deposition (CVD) processes, namely the conventional CVD process based on catalytic thermal decomposition of ethylene and the oxidative dehydrogenation reaction between acetylene and carbon dioxide. The effect of various CVD growth parameters, such as temperature, catalyst composition and process gas mixture, was for the first time systematically studied for both processes and correlated with the mechanical properties of carbon fibers derived from single-fiber tensile tests. The growth temperature was found to be the most critical parameter in the presence of catalyst particles and reactive gasses for both processes. The oxidative dehydrogenation reaction enabled decreasing CNT growth temperature as low as 500 °C and succeeded to grow CNTs without degradation of carbon fiber's mechanical properties. The Weibull modulus even increased indicating partial healing of present defects during the CVD process. The new insights gained in this study open a way towards simple, highly reproducible and up-scalable process of grafting CNTs on carbon fibers without inducing any damages during the CVD process. This represents an important step towards CNT-reinforced CFRCs with higher damage resistance.  相似文献   

4.
In this investigation, in situ synthesis of zinc oxide nanoparticles in the presence of multiwalled carbon nanotubes (CNTs) have been carried out using a sonochemical technique. Zinc(II)acetate was used as a source of ZnO in the presence of ethylene glycol (EG) to obtain zinc oxide (ZnO) nanoparticles. The synthesized hybrid ZnO/CNTs nanoparticles were used as reinforcements to enhance the mechanical, thermal and UV absorbing properties of Nylon‐6 composite fibers. The polymer nanocomposites (PNC) were fabricated by dry mixing Nylon‐6 polymer powder with the ZnO/CNTs hybrid nanoparticles as the first step, then followed by the drying and melt extrusion process of fiber materials in a single‐screw extruder. The extruded fibers were stretched and stabilized using a godet set‐up and wound on a Wayne filament winder machine. The hybrid ZnO/CNTs infused Nylon‐6 composite fibers were compared with commercial ZnO, CNTs infused Nylon‐6 composite fibers and neat Nylon‐6 fibers for their structural and thermal properties. The morphological characteristics of ZnO/CNTs nanoparticles were carried out using X‐ray diffraction and transmission electron microscopy (TEM) techniques. The Nylon‐6 PNC fibers which were of ~80 μ size were tested mechanically. The tensile tests revealed that failure stress of the 1% infused ZnO/CNTs Nylon‐6 PNC fibers is about 73% higher than the neat extruded Nylon‐6 fiber and the improvement in the tensile modulus is 377.4%. The DSC results show an increase in the glass transition temperature and crystallization for ZnO/CNTs infused Nylon‐6 PNC fibers. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
《Polymer Composites》2017,38(11):2425-2432
The surface topographies of carbon fibers treated by sizing agents with different graphene oxide (GO) content were investigated by scanning electron microscopy. The surface elements compositions of carbon fibers were determined by X‐ray photoelectron spectrometer. The interfacial properties of composites were studied by interfacial shear strength. The thermo‐mechanical properties of two typical specimens (CF‐G0 and CF‐G1 composites) were investigated by dynamic mechanical thermal analysis. The results showed the introduction of GO sheets on carbon fibers surfaces effectively improved the mechanical properties of carbon fibers/epoxy composites. POLYM. COMPOS., 38:2425–2432, 2017. © 2016 Society of Plastics Engineers  相似文献   

6.
Straight carbon nanotubes (CNTs) were grafted radially onto carbon fibers to produce hybrid materials that were used to reinforce carbon/carbon (C/C) composites. Mechanical property tests indicated that these C/C composites have improvements in out-of-plane and in-plane compressive strengths and interlaminar shear strength of 275%, 138% and 206%, respectively. They also have a large decrease in the anisotropy of mechanical properties, compared with pure C/C composites. This great improvement is the result of the simultaneous reinforcements to the fiber/matrix interface and the matrix provided by the grafted CNTs.  相似文献   

7.
Controlled growth and uniform patterning of graphene/carbon shells encapsulated gold nanoparticles (GNPs) on silicon wafer or on high curvature carbon nanotubes (CNTs) is reported here. This was achieved by utilizing patterned gold nanoparticles with controlled sizes (∼30–600 nm) via gold film dewetting process. Surface-oxidized and patterned nanoparticles were used as sacrificial catalysts for the chemical vapor deposition (CVD) growth of graphene/carbon shells. The shell morphological evolution and thickness as well as surface migration of nanoparticles during the CVD process were studied as a function of the gold nanoparticles size. Reduced surface migration and coalescence was observed for gold nanoparticles after the CVD growth and this was attributed to the initial formation of graphene/carbon shells as well as stable dispersion of the dewetted gold nanoparticles. It is proposed that graphene/carbon shell growth was controlled by Ostwald’s ripening, surface gold oxide, and reducing CVD growth environment. Furthermore, complex heterostructures based on CNTs coated with GNPs were fabricated by dewetting Au films on CNTs and followed by surface oxidation and CVD growth steps. CNTs successfully survived multiple processing steps and selective growth of graphene shells around Au nanoparticles was achieved and studied using microscopic and spectroscopic methods.  相似文献   

8.
Since the carbon nanotubes (CNTs) have been discovered, there has been a marked increase in the scientific literature dealing with multi‐scale composites. The multi‐scale hybrid composites with CNTs could endow the composites with some superior mechanical properties, such as improving the tensile performance, modest increasing compressive and flexural properties, and significantly enhancing interlaminar, interfacial and fracture strength. In addition, composites with CNTs can also develop the functional properties. A small quantity of CNTs can significantly increase the electrical properties of composites and lower the coefficient of thermal expansion of composites. The purpose of this work is to review the available literature in mechanical and functional properties of multi‐scale hybrid composites manufactured using CNTs. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

9.
In this study, the effect of the carbon nanotube (CNT) aspect ratio and surface functionalization on the mechanical behavior and morphological changes of polyamide (PA)‐based fibers was investigated. Composites were prepared by the melt blending of CNTs with PA, and at a later time, the fibers were prepared by melt spinning and cold drawing. A reinforcement effect was noticed for all of the CNTs samples, and the increase in the mechanical properties and dimensional stability was more pronounced for highly oriented filaments. When the elongational flow was increased, the orientation of CNTs along the fiber direction was observed, but the nanotube alignment was much more difficult for CNTs with ultrathin outer diameters because of nanotube waviness and folding. Moreover, the presence of functional groups on the CNT surface hindered their orientation along the fiber direction because some interaction between the functional groups could occur. The morphological variations of the oriented, anisotropic fibers, as studied with transmission electron microscopy, scanning electron microscopy, small‐angle X‐ray scattering, and differential scanning calorimetry analysis, were correlated with changes in the mechanical behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
The insufficient viscoelastic resistance of fiber reinforced plastics can be retrofitted by the addition of more rigid nano fillers to the polymer matrix. In this study, carbon fibers plies were grafted with zinc oxide (ZnO) nano‐rods and the hybridized reinforcement was utilized in laminated composites. Flexural creep tests were carried out using dynamic mechanical analysis (DMA) and the time/temperature superposition principle was employed for accelerated testing. To verify the applicability of TTPS, prolonged stress relaxation tests were also carried out in flexural mode. Data from the DMA flexural creep tests revealed that the whiskerization of carbon fibers with ZnO nano rods reduced the creep compliance by 23% at elevated temperatures and prolonged durations. Also, the relaxation data confirmed the applicability of TTPS to these hybrid composites. The stress relaxation modulus improved by 65% in comparison to composites based on neat carbon fibers. POLYM. COMPOS., 36:1967–1972, 2015. © 2014 Society of Plastics Engineer  相似文献   

11.
Quasi‐static tensile, out‐of compression, in‐plane compression, three‐point‐bending and shear tests were conducted to reveal the mechanical behavior and failure mechanisms of three‐dimensional (3D) multiaxial warp‐knitted (MWK) carbon/epoxy composites. The characterization of the failure process and deformation analysis is supported by high‐speed camera system and Digital Image Correlation. The results show that tensile, bending, out‐of‐plane compression, in‐plane compression stress–strain response exhibit obvious linear elastic feature and brittle fracture characteristics, whereas the shear response exhibits a distinct nonlinear behavior and gradual damage process. Meanwhile, 3D MWK carbon/epoxy composites have good mechanical properties, which can be widely used in the fields of engineering. In addition, the failure for tension behaves as interlayer delaminating, 90/+45/−45° interface debonding and tensile breakage of 0° fibers; the damage for out‐of‐plane compression is mainly interlaminar shear dislocation together with local buckling and shear fracture of fibers; the failure pattern for in‐plane compression is 90° fiber separating along fiber/matrix interface as well as 0/+45/−45° fiber shear fracture in the shear plane. The main failure for bending is fiber/matrix interface debonding and fibers tearing on the compression surface, 0° fibers breakage on the tension surface as well as fiber layers delaminating. Although the shear behavior is characterized by a gradually growing shear matrix damage, 90/+45/−45° interface debonding, +45/−45° fibers shear fracture, and final 0° fiber compression failure. POLYM. COMPOS., 37:3486–3498, 2016. © 2015 Society of Plastics Engineers  相似文献   

12.
Yaodong Liu  Han Gi Chae  Satish Kumar 《Carbon》2011,49(13):4466-4476
Addition of carbon nanotubes (CNTs) in polyacrylonitrile (PAN) fibers significantly improves the mechanical properties of the resulting carbon fibers. This study focuses on the effect of different types of CNTs on chemical, mechanical and structural changes during the stabilization of gel-spun CNT/PAN composite fibers. Among the different types of CNTs, it was observed that CNTs containing more walls had lower reinforcement efficiency than CNTs containing fewer walls. Similarly CNTs containing fewer walls exhibited higher orientation of the ladder polymer and greater effect on the formation of β-amino nitrile in the stabilized fibers. Wide angle X-ray diffraction, infrared spectroscopy, and scanning electron microscopy were used to determine the optimum stabilization time. Additionally, it was found that the higher tension applied during stabilization improved the properties of the stabilized fibers, and the addition of CNTs increased the maximum tension that the fiber can bear.  相似文献   

13.
An aqueous suspension deposition method was used to coat the sized carbon fibers T700SC and T300B with commercially carboxylic acid-functionalized and hydroxyl-functionalized carbon nanotubes (CNTs). The CNTs on the fiber surfaces were expected to improve the interfacial strength between the fibers and the epoxy. The factors affecting the deposition, especially the fiber sizing, were studied. According to single fiber-composite fragmentation tests, the deposition process results in improved fiber/matrix interfacial adhesion. Using carboxylic acid-functionalized CNTs, the interfacial shear strength was increased 43% for the T700SC composite and 12% for the T300B composite. The relationship between surface functional groups of the CNTs and the interfacial improvement was discussed. The interfacial reinforcing mechanism was explored by analyzing the surface morphology of the carbon fibers, the wettability between the carbon fibers and the epoxy resin, the chemical bonding between the fiber sizing and the CNTs, and fractographic observation of cross-sections of the composites. Results indicate that interfacial friction, chemical bonding and resin toughening are responsible for the interfacial improvement of nanostructured carbon fiber/epoxy composites. The mechanical properties of the CNT-deposited composite laminate were further measured to confirm the effectiveness of this strategy.  相似文献   

14.
Cf/SiC composites were fabricated using fiber coatings including CNTs and matrix infiltration using the polymer impregnation and pyrolysis process. Interface between fiber and CNTs (CF/CNTs) was tailored to optimize mechanical properties of hybrid composites. The tailored interphases, such as Pyrocarbon (PyC) and PyC/SiC, protect fibers from degradation during the growth of CNTs successfully. Hybrid composites with well‐tailored CF/CNTs interface displayed significantly increased mechanical strength (352 ± 21 MPa) compared with that (34 ± 3 MPa) of composites reinforced with CNTs, which grown on carbon fibers directly. The interfacial bonding strength of hybrid composites was improved and optimized by tailoring the CF/CNTs interface. Interfacial failure modes were studied, and a firm interface bonding at the joint where CNTs grown was observed.  相似文献   

15.
In this study, carboxylic acid functionalized carbon nanotubes (CNTs) were used to modify epoxy with intent to develop a nanocomposite matrix for hybrid multiscale composites combining benefits of nanoscale reinforcement with well‐established fibrous composites. CNTs were dispersed in epoxy by using high energy sonication, followed by the fabrication of epoxy/CNTs composites. The processibility of CNTs/epoxy systems was explored with respect to their dispersion state and viscosity. The dependences of viscosity, mechanical and thermomechanical properties of nanocomposite system on CNTs content were investigated. The dispersion quality and reagglomeration behavior of CNTs in epoxy and the capillary infiltration of continuous fiber with the epoxy/CNTs dispersion were characterized using optical microscope and capillary experiment. As compared with neat epoxy sample, the CNTs nanocomposites exhibit flexural strength of 126.5 MPa for 1 wt% CNTs content and impact strength of 28.9 kJ m?2 for 0.1 wt% CNTs content, respectively. A CNTs loading of 0.1 wt% significantly improved the glass transition temperatures, Tg, of the nanocomposites. Scanning electron microscopy (SEM) was used to examine the fracture surface of the failed specimens. It is demonstrated that the properties of CNTs/epoxy system are dispersion‐dominated and interface sensitive. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

16.
The overall mechanical performance of glass–carbon hybrid fibers reinforced epoxy composites depends heavily upon fiber–matrix interfacial properties and the service temperatures. Fiber‐bundle pull‐out tests of glass (GF) and/or carbon fiber (CF) reinforced epoxy composites were carried out at room and elevated temperatures. Graphene nanoplatelets were added in the interfacial region to investigate their influence on the interfacial shear strength (IFSS). Results show that IFSS of specimens with fiber‐bundle number ratio of GF:CF = 1:2 is the largest among the hybrid composites, and a positive hybridization effect is found at elevated temperatures. IFSS of all the specimens decreases with the increasing of test temperatures, while the toughness shows a contrary tendency. As verified by scanning electron microscopy observations, graphene nanoplatelets on fiber surface could enhance the IFSS of pure glass/carbon and hybrid fibers reinforced epoxy composites at higher temperatures significantly. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46263.  相似文献   

17.
The structure and properties of hybrid multiscale composites containing carbon nanotubes (CNTs) was reported. CNTs were dispersed in epoxy by using high energy ultrasonication, followed by the fabrication of CNT hybrid composites via resin transfer molding (RTM) processing. The processability of CNTs/epoxy systems was explored by a capillary experiment. The dependences of mechanical and electrical properties of the hybrid composites on CNT content were investigated. Microscopic observation confirms the formation of CNTs percolation network. The different roles of CNT networks in mechanical reinforcement and electrical amelioration were analyzed. One explanation based on the dispersion and distribution of CNTs is proposed. It is found that the variations of the hybrid composites with respect to mechanical and electrical properties are attributed to the hierarchical structure in the hybrid composites. As far as the hybrid multiscale composites produced via RTM process is concerned, the formation of CNT percolation network, subjected to dynamic impregnation, is hindered by the presence of continuous fibrous reinforcement. The hierarchical structure influenced by several competing factors reveals great potential in being able to tailor the structural and functional performance of the CNT hybrid composites. The effects of CNTs on the dimensional stability of polymer based composites are also assessed. POLYM. COMPOS., 34:1690–1697, 2013. © 2013 Society of Plastics Engineers  相似文献   

18.
We have studied an effect of three types of modifications of carbon nanotubes (CNTs) on dispersion and mechanical properties of final epoxy‐amine based nanocomposites. First approach includes end‐walled covalent chemical modification at the ends of nanotubes. The second one is side‐walled covalent chemical modification along the whole length of nanotubes. The third procedure is noncovalent, physical modification done by the CNT surface coating with polyaniline. The modification of nanotubes was determined by X‐ray photoelectron spectroscopy. The prepared epoxy‐amine nanocomposites were characterized by dynamic‐mechanical analysis, tensile testing, light microscopy, transmission electron microscopy, and thermogravimetry. We observed an improvement of the mechanical properties and the thermal stability by addition of the carbon nanotubes to the epoxy matrix. The strong interactions between the nanotube and the polymer matrix were discovered in the nanocomposites with physically modified nanotubes. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

19.
C.Q. Yang  Z.S. Wu  H. Huang 《Carbon》2007,45(15):3027-3035
The electrical resistance (ER)–time, current–voltage and ER–temperature behaviors of carbon fiber reinforced plastics (CFRPs) reinforced with high strength (HS), medium modulus (MM), and high modulus (HM) carbon fibers were studied. At the same time, the electrical properties of hybrid CFRPs (HCFRPs) reinforced with more than one type of carbon fibers were also studied. It was shown that the value of the current influences the electrical stability and the ER measurement accuracy. In order to obtain an accurate ER measurement, the current should be larger than 1.5 mA. All the CFRPs and HCFRPs are characterized by linear current–voltage and Ohmic behaviors. A negative temperature coefficient (NTC) behavior is exhibited for all types of specimens. The NTCs of the CFRPs reinforced with HS, MM and HM carbon fibers are 0.038, 0.033 and 0.094, respectively. For the specimens of HCFRPs containing HM carbon fibers, the NTC becomes larger with increasing the volume fraction of HM carbon fibers. The good linear and reversible relationship between the change in ER and temperature indicates that the CFRPs and HCFRPs may be used as temperature sensors.  相似文献   

20.
The objective of this study was to investigate three kinds of filler with completely different morphology on mechanical properties of natural rubber (NR). Coal gangue (CG) are derived from natural deposits are composed principally by illite and quartz. CG, carbon black (CB), and multiwalled carbon nanotube (CNT) were used as hybrid fillers in NR. CNTs were dispersed into NR latex by ultrasonic irradiation and then the mixed latex were coagulated to obtain the CNTs/NR masterbatch, then mechanical mixing method was employed to prepare the CG/CB/CNTs/NR composites. The addition of CG, CB, and CNTs to NR was varied with the total filler loading fixed at 35 phr. The mechanical properties of NR composites were studied in terms of tensile and dynamic mechanical analysis (DMA). The results showed that the tensile strength and modulus 300% (M300) of all hybrid samples were higher than the composites only loaded CG; and the highest tensile strength of NR loaded with hybrid fillers achieved at sample of loading amount of CG 17.5, CB 15.5, and CNTs 2 phr, whose M300 and elongation at break was obviously higher than that of only CB loaded NR composites; The inclusion CG improves the tensile strength of NR without the sacrifice of its extensibility, while CB and CNTs brings together the enhancement in the ultimate strength and the reduction in the extensibility. DMA results revealed that the existence of CG can improve the dispersion of CB and CNTs in NR matrix. POLYM. COMPOS., 37:3083–3092, 2016. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号