首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Biodegradable polymer foams are attracting extensive attention in both academic and industrial fields. In this study, an emerging biodegradable polymer, poly(propylene carbonate) (PPC), was compounded with nano calcium carbonate (nano‐CaCO3) and foamed via supercritical carbon dioxide for the first time. Four concentrations of nano‐CaCO3, 1, 3, 5, and 10 wt %, were used and the thermal properties of PPC/nano‐CaCO3 composites were investigated. The glass‐transition temperature and thermal decomposition temperature of the PPC/nano‐CaCO3 composites increased with the addition of nano‐CaCO3. The morphologies of the PPC/nano‐CaCO3 composites and the rheological results showed that homogeneous dispersions of nano‐CaCO3 and percolated nano‐CaCO3 networks were achieved at a nano‐CaCO3 content of 3 wt %. Therefore, the finest cell diameter (3.13 μm) and highest cell density (6.02 × 109 cells/cm3) were obtained at the same nano‐CaCO3 content. The cell structure dependences of PPC and PPC with a nano‐CaCO3 content of 3 wt % (PPC‐3) foams on the foaming pressure and temperature were investigated as well. The results suggested that the cell structure of PPC‐3 was more stable at different foaming conditions due to the networks of nano‐CaCO3. Moreover, the change in pressure was more influential on the cell structure than the temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42248.  相似文献   

2.
In this work, nano‐CaCO3 was used to improve the foamability of carbon fiber (CF)/polypropylene (PP) composite in solid‐state foaming using supercritical CO2. The CF content was maintained at 15 wt% and four concentrations of nano‐CaCO3 content, 1, 3, 5 and 8phr, were used. The surface of nano‐CaCO3 was firstly treated by silane coupling agent. By the way, the properties of the nano‐composites with various nano‐CaCO3 contents were analyzed by scanning electron microscope (SEM), differential scanning calorimeter (DSC), and torque rheometer. Before foaming, the gas absorption experiment was done using gravimetric method. Concerning on determination of the foaming conditions, it is found that 175°C and 60s were suitable as foaming temperature and time. Furthermore, we can also find that the foamed composites with 3phr nano‐CaCO3 showed the smallest mean cell diameter and largest cell density compared with the other nano‐CaCO3 contents under the given saturation condition. In addition, the mean cell diameter decreased while cell density increased as saturation pressure increased because of the higher gas solubility in the composites. When the saturation pressure was 25MPa, the mean cell diameter and cell density with 3phr nano‐CaCO3 were 17μm and 2.20×107cells/cm3, respectively. POLYM. COMPOS., 35:1723–1735, 2014. © 2013 Society of Plastics Engineers  相似文献   

3.
Biodegradable foams were successfully prepared from calcium carbonate reinforced poly(propylene carbonate) (PPC/CaCO3) composites using chemical foaming agents. The incorporation of inexpensive CaCO3 into PPC provided a practical way to produce completely biodegradable and cost‐competitive composite foams with densities ranging from 0.05 to 0.93 g/cm3. The effects of foaming temperature, foaming time and CaCO3 content on the fraction void, cell structure and compression property of the composite foams were investigated. We found that the fraction void was strongly dependent on the foaming conditions. Morphological examination of PPC/CaCO3 composite foams revealed that the average cell size increased with increasing both the foaming temperature and the foaming time, whereas the cell density decreased with these increases. Nevertheless, the CaCO3 content showed opposite changing tendency for the average cell size and the cell density because of the heterogeneous nucleation. Finally the introduction of CaCO3 enhanced the compressive strength of the composite foams dramatically, which was associated with well‐developed cell morphology. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5240–5247, 2006  相似文献   

4.
A study on the extrusion of microcellular polystyrene foams at different foaming temperatures was carried out using CO2 as the foaming agent. The contraction flow in the extrusion die was simulated with FLUENT computational fluid dynamics code at two temperatures (150°C and 175°C) to predict pressure and temperature profiles in the die. The location of nucleation onset was determined based on the pressure profile and equilibrium solubility. The relative importance of pressure and temperature in determining the nucleation rate was compared using calculations based on classical homogeneous nucleation theory. Experimentally, the effects of die temperature (i.e., the foaming temperature) on the pressure profile in the die, cell size, cell density, and cell morphology were investigated at different screw rotation speeds (10 ~ 30 rpm). Experimental results were compared with simulations to gain insight into the foaming process. Although the foaming temperature was found to be less significant than the pressure drop or the pressure drop rate in deciding the cell size and cell density, it affects the cell morphology dramatically. Open and closed cell structures can be generated by changing the foaming temperature. Microcellular foams of PS (with cell sizes smaller than 10 μm and cell densities greater than 10 cells/cm3) are created experimentally when the die temperature is 160°C, the pressure drop through the die is greater than 16 MPa, and the pressure drop rate is higher than 109 Pa/sec.  相似文献   

5.
Intercalated and exfoliated polystyrene/nano‐clay composites were prepared by mechanical blending and in situ polymerization respectively. The composites were then foamed by using CO2 as the foaming agent in an extrusion foaming process. The resulting foam structure is compared with that of pure polystyrene and polystyrene/talc composite. At a screw rotation speed of 10 rpm and a die temperature of 200°C, the addition of a small amount (i.e., 5 wt%) of intercalated nano‐clay greatly reduces cell size from 25.3 to 11.1 μm and increases cell density from 2.7 × 107 to 2.8 × 108 cells/cm3. Once exfoliated, the nanocomposite exhibits the highest cell density (1.5 × 109 cells/cm3) and smallest cell size (4.9 μm) at the same particle concentration. Compared with polystyrene foams, the nanocomposite foams exhibit higher tensile modulus, improved fire retardance, and better barrier property. Combining nanocomposites and the extrusion foaming process provides a new technique for the design and control of cell structure in microcellular foams.  相似文献   

6.
Extrusion foaming using supercritical carbon dioxide (CO2) as the blowing agent is an economically and environmentally benign process. However, it is difficult to control the foam morphology and maintain its high thermal insulation comparing to the conventional foams based on fluorocarbon blowing agents. In this study, we demonstrated that polystyrene (PS) foams with the bimodal cell morphology can be produced in the extrusion foaming process using CO2 and water as co-blowing agents and two particulate additives as nucleation agents. One particulate is able to decrease the water foaming time so both CO2 and water can induce foaming simultaneously, while the other increases the CO2 nucleation rate with little effect on the CO2 foaming time. Our experimental results showed that a dual particulate combination of nanoclay and activated carbon provided the best bimodal structure. The bimodal foams exhibited much better compressive properties and slightly better thermal insulation for PS foams.  相似文献   

7.
Polystyrene (PS) foams have been used in various fields, whereas its broader application is limited by its low mechanical strength and brittle features. In this study, styrene–butadiene–styrene (SBS) and calcium carbonate (CaCO3) nanoparticles were melt‐blended with PS and extrusion‐foamed with supercritical carbon dioxide as a blowing agent to simultaneously toughen and reinforce PS foams. Under the same foaming conditions, the addition of SBS and CaCO3 was shown to have a significant influence on the cell structure and the compressive properties of the composite foams. We found that the cell structure evolution was highly correlated with the system viscosity. When the rubbery‐phase SBS content was 20%, the cell diameter decreased by 20.7%, and the compressive modulus was enhanced by 289.5%. With the further addition of 5% rigid CaCO3 nanoparticles, the cell diameter was further reduced by 72.2% and the compressive modulus was improved by 379.2%. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43508.  相似文献   

8.
A new process was used to prepare microcellular foams with supercritical carbon dioxide as the physical foaming agent in a batch. The foaming temperature range of the new process was about five times broader than that of the conventional one. Characterization of the cellular structure of the original polypropylene (PP) and PP/nano‐CaCO3 (nanocomposites) foams was conducted to reveal the effects of the blend composition and processing conditions. The results show that the cellular structure of the PP foams was more sensitive to the foaming temperature and saturation pressure variations than that of the nanocomposite foams. Uniform cells of PP foams are achieved only at a temperature of 154°C. Also, the low pressure of 20 MPa led to very small cells and a low cell density. The competition between the cell growth and cell nucleation played important role in the foam density and was directly related to the foaming temperature. Decreasing the infiltration temperature depressed the initial foaming temperature, and this resulted in significantly larger cells and a lower cell density. A short foaming time led to a skin–core structure; this indicated that a decrease in the cell size was found from skin to core, but the skin–core structure gradually disappeared with increasing foaming time. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
In this study, microcellular foaming of low‐density polyethylene (LDPE) using nano‐calcium carbonate (nano‐CaCO3) were carried out. Nanocomposite samples were prepared in different content in range of 0.5–7 phr nano‐CaCO3 using a twin screw extruder. X‐ray diffraction and scanning electron microscopy (SEM) were used to characterize of LDPE/nano‐CaCO3 nanocomposites. The foaming was carried out by a batch process in compression molding with azodicarbonamide (ADCA) as a chemical blowing agent. The cell structure of the foams was examined with SEM, density and gel content of different samples were measured to compare difference between nanocomposite microcellular foam and microcellular foam without nanomaterials. The results showed that the samples containing 5 phr nano‐CaCO3 showed microcellular foam with the lowest mean cell diameter 27 μm and largest cell density 8 × 108 cells/cm3 in compared other samples. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

10.
The Archimedes' principle and physical theory are attempted to analysis the densification and structure of the polystyrene (PS) composites by melt compounding with CaCO3 having different particle size. The difference between the measured specific volume (ν) andthe theoretically calculated specific volume (νmix), Δν = ν−νmix, can reflect the densification of the composites. It is clearly demonstrated that the PS composites become more condensed with the reduction of the CaCO3 particle size. Especially, when the content for nano‐CaCO3 achieves 2 wt%, the Δν value of the composites reaches the least, which shows the best densification. Meanwhile, the glass transition temperature (Tg) reaches the maximum value of about 100°C by differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA), which indirectly reveals the composites microstructure more condensed. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) reveal that 2 wt% nano‐CaCO3 uniformly disperses in PS composites. The CaCO3 selected in this experiment has certain toughening effect on PS. The impact and tensile strength increase with addition of nano‐CaCO3, but the elongation at break decreases. When nano‐CaCO3 content achieved 2 wt%, the impact and tensile strength present the maximum value of 1.63 KJ/m2 and 44.5 MPa, which is higher than the pure PS and the composites filled with the same content of micro‐CaCO3. POLYM. COMPOS., 31:1258–1264, 2010. © 2009 Society of Plastics Engineers  相似文献   

11.
This article reports an attempt to improve polypropylene (PP) microcellular foaming through the blending of PP with high‐density polyethylene (HDPE) as a minor component and the incorporation of nano‐calcium carbonate (nano‐CaCO3) into PP and its blends with HDPE. Three HDPEs were selected to form three blends with a viscosity ratio less than, close to, or greater than unity. Two concentrations of nano‐CaCO3, 5 and 20 wt %, were used. The blends and nanocomposites were prepared with a twin‐screw extruder. The foaming was carried out by a batch process with supercritical carbon dioxide as a blowing agent. The online shear viscosity during compounding and the dynamic rheological properties of some samples used for foaming were measured. The cell structure of the foams was examined with scanning electron microscopy (SEM), and the morphological parameters of some foams were calculated from SEM micrographs. The rheological properties of samples were used to explain the resulting cell structure. The results showed that the blend with a viscosity ratio close to unity produced a microcellular foam with the minimum mean cell diameter (0.7 μm) and maximum cell density (1.17 × 1011 cells/cm3) among the three blends. A foamed PP/nano‐CaCO3 composite with 5 wt % nano‐CaCO3 exhibited the largest cell density (8.4 × 1011 cells/cm3). © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
Biodegradable poly(ε‐caprolactone) (PCL)/calcium carbonate (CaCO3) nanocomposites were prepared and characterized. Effect of CaCO3 on thermal and mechanical properties of PCL matrix was studied. Results showed that CaCO3 acts as a crystallization nucleating agent and introduction of CaCO3 leads to improved mechanical properties of the PCL matrix. PCL/CaCO3 nanocomposite foams were prepared using chemical foaming method. Cellular parameters such as mean cell size, cell wall thickness, and cell density were collected. The cellular structure of nanocomposite foams changes with different CaCO3 loading. Mean cell size achieved the minimum value at 5 wt% CaCO3 loading, and cell wall thickness increased with CaCO3 content. The changes in cellular structure and improvement of mechanical properties also enhanced the mechanical properties of PCL/CaCO3 nanocomposite foams. Compressive moduli of PCL/CaCO3 nanocomposite foams with similar density increased with increasing CaCO3 loading. POLYM. COMPOS., 31:1653–1661, 2010. © 2009 Society of Plastics Engineers  相似文献   

13.
Intercalated and exfoliated low‐density polyethylene (LDPE)/clay nanocomposites were prepared by melt blending with and without a maleated polyethylene (PE‐g‐MAn) as the coupling agent. Their morphology was examined and confirmed by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of clay content and dispersion on the cell morphology of nanocomposite foams during extrusion foaming process were also thoroughly investigated, especially with a small amount of clay of 0.05–1.0 wt%. This research shows the optimum clay content for achieving microcellular PE/clay nanocomposite foams blown with supercritical CO2. It is found that < 0.1 wt% of clay addition can produce the microcellular foam structure with a cell density of > 109 cells/cm3 and a cell size of ~ 5 μm. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2129–2134, 2007  相似文献   

14.
When polymer blends are foamed by physical foaming agents, such as CO2 or N2, not only the morphology and viscosity of the blend polymers but also the solubility and diffusivity of the physical foaming agents in the polymers determine the cellular structure: closed cell or open cell and monomodal or bimodal. The foam of poly(ethylene glycol) (PEG)/polystyrene (PS) blends shows a unique bimodal (large and small) cellular structure, in which the large‐size cells embrace a PEG particle. Depending on the foaming condition, the average size of the large cells ranges from 40 to 500 μm, whereas that of small cells becomes less than 20 μm, which is smaller than that of neat PS foams. The formation mechanism of the cellular structure has been investigated from the viewpoint of the morphology and viscosity of the blend polymer and the mass‐transfer rate of the physical foaming agent in each polymer phase. The solubility and diffusivity of CO2, which determine the mass‐transfer rate of CO2 from the matrix to the bubbles, were measured by a gravimetric measurement, that is, a magnetic suspension balance. The solubility and diffusivity of CO2 in PS differed from those in PEG: the diffusion coefficient of CO2 in PEG at 110°C was 3.36 × 10?9 m2/s, and that in PS was 2.38 × 10?10 m2/s. Henry's constant in PEG was 5600 cm3 (STP)/(kg MPa) at 110°C, and that in PS was 3100 cm3 (STP)/(kg MPa). These differences in the transport properties, morphology of the blend, and CO2‐induced viscosity depression are the control factors for creating the unique cellular structure in PEG/PS blends. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1899–1906, 2005  相似文献   

15.
Nanocellular foaming of polystyrene (PS) and a polystyrene copolymer (PS‐b‐PFDA) with fluorinated block (1,1,2,2‐tetrahydroperfluorodecyl acrylate block, PFDA) was studied in supercritical CO2 (scCO2) via a one‐step foaming batch process. Atom Transfer Radical Polymerization (ATRP) was used to synthesize all the polymers. Neat PS and PS‐b‐PFDA copolymer samples were produced by extrusion and solid thick plaques were shaped in a hot‐press, and then subsequently foamed in a single‐step foaming process using scCO2 to analyze the effect of the addition of the fluorinated block copolymer in the foaming behaviour of neat PS. Samples were saturated under high pressures of CO2 (30 MPa) at low temperatures (e.g., 0°C) followed by a depressurization at a rate of 5 MPa/min. Foamed materials of neat PS and PS‐b‐PFDA copolymer were produced in the same conditions showing that the presence of high CO2‐philic perfluoro blocks, in the form of submicrometric separated domains in the PS matrix, acts as nucleating agents during the foaming process. The preponderance of the fluorinated blocks in the foaming behavior is evidenced, leading to PS‐b‐PFDA nanocellular foams with cell sizes in the order of 100 nm, and bulk densities about 0.7 g/cm3. The use of fluorinated blocks improve drastically the foam morphology, leading to ultramicro cellular and possibly nanocellular foams with a great homogeneity of the porous structure directly related to the dispersion of highly CO2‐philic fluorinated blocks in the PS matrix. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
In this article, the morphology, crystallization, and rheological behaviors of polypropylene (PP)/ethylene‐propylene‐diene terpolymer (EPDM) binary blend and PP/EPDM/calcium carbonate nanoparticles (nano‐CaCO3) ternary blend were investigated. Two processing methods, i.e., direct extrusion and two‐step extrusion, were employed to prepare the PP/EPDM/CaCO3 blend. The influence of EPDM and nano‐CaCO3 respectively on phase morphology and properties of PP/EPDM blend and PP/EPDM/CaCO3 blend were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and dynamic rheometer. The crystallinity and crystallization temperature of PP/EPDM blend were improved in comparison to pure PP due to addition of EPDM, but kept invariable with the increased EPDM loading. As the EPDM content was increased, the mobility of PP molecular chains was weakened. Compared with direct extruded blend, less and finer nano‐CaCO3 was dispersed in matrix of two‐step extruded blend. Accordingly, the increased nano‐CaCO3 in matrix gave rise to a weaker increment in crystallinity and crystallization temperature of two‐step extruded blend, and a later platform of tanδ curve. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
This paper presents a technology to determine the melt viscosity of a PS/super-critical CO2 solution using a linear capillary tube die mounted on a foaming extruder. CO2 was injected into the extrusion barrel and the content of CO2 was varied in the range of O to 4 wt% using a positive displacement pump. Single-phase PS/CO2 solutions were formed using a microcellular extrusion system and phase separation was prevented by maintaining a high pressure in the capillary tube die. By measuring the pressure drop through the die, the viscosity of PS/CO2 solutions was determined. The experimental results indicate that the PS/CO2 solution viscosity is a senstive function of shear rate, temperature, pressure, and CO2 content. A theoretical model based on the generalized Cross-Carreau model was proposed to describe the shear-thinning behavior of PS/CO2 solutions at various shear rates. The zero-shear viscosity was modeled using a generalized Arrhenius equation to accommo-date the effects of temperature, pressure, and CO2 content. Finally, the solubility of CO2 has been estimated by monitoring the pressure drop and the absolute pressure in the capillary die.  相似文献   

18.
This research presents the foaming behaviors of linear polypropylene (PP) and PP/clay nanocomposites blown with supercritical CO2. The cell nucleation and expansion behaviors of the linear PP and PP‐based nanocomposites at various clay contents during extrusion foaming are studied. The experimental results indicate that the nano‐particles have a positive impact on improving the cell morphology, the cell density and the expansion ratio of the linear PP foams. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Novel poly(aryl ether nitrile ketone) foams were prepared through the batch foaming method with supercritical CO2 as the blowing agent. Both temperature‐induced and pressure‐induced foaming methods were conducted to examine the influence of nitrile groups on the foaming result. The results indicated that nitrile groups influenced the foaming result by affecting both the viscoelasticity and CO2 absorption of the polymers. In addition, the CO2 solubility of the polymers increased with increasing CN content presumably because of the Lewis acid–base nature of the interaction between the CO2 molecules and the nitrile groups. The cell growth process was assessed by analyzing the influence of foaming temperature and foaming time on the cell morphology. Nanocellular foams with a minimum size of 30–50 nm were achieved by the temperature‐induced foaming method. Moreover, highly expanded foams with a maximum expansion ratio of 23.6 were obtained by the pressure‐induced foaming method. © 2018 Society of Chemical Industry  相似文献   

20.
This paper presents an experimental study of the foaming behavior of polypropylene (PP)/(waste ground rubber tire powder) (WGRT) blends when using a chemical blowing agent in an extrusion foaming process. The effects of formulations (i.e., WGRT content, blowing agent content, compatibilizer) and the processing parameters (i.e., die temperature, screw speed) on the void fraction, average cell size, cell density, and cell morphology of the PP/WGRT foams were investigated. The blowing agent loading affected the cell structure of the foams and the average cell size, and the void fraction increased with increasing blowing agent loading. Both increasing the screw speed and decreasing the die temperature could establish a high pressure drop in the extruder die, and these were beneficial to the foaming extrusion. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号