首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A methodology is presented to determine both the short‐term and the long‐term influence of the spectral variations on the performance of multi‐junction (MJ) solar cells and concentrator photovoltaic (CPV) modules. Component cells with the same optical behavior as MJ solar cells are used to characterize the spectrum. A set of parameters, namely spectral matching ratios (SMRs), is used to characterize spectrally a particular direct normal irradiance (DNI) by comparison to the reference spectrum (AM1.5D‐ASTM‐G173‐03). Furthermore, the spectrally corrected DNI for a given MJ solar cell technology is defined providing a way to estimate the losses associated to the spectral variations. The last section analyzes how the spectrum evolves throughout a year in a given place and the set of SMRs representative for that location are calculated. This information can be used to maximize the energy harvested by the MJ solar cell throughout the year. As an example, three years of data recorded in Madrid shows that losses lower than 5% are expected because of current mismatch for state‐of‐the‐art MJ solar cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Maximization of module conversion efficiency based on global normal irradiance (GNI) rather than direct normal irradiance (DNI) was experimentally demonstrated using a hybrid concentrator photovoltaic (CPV) architecture in which a low‐cost solar cell (a bifacial crystalline silicon cell) was integrated with a high‐efficiency concentrator solar cell (III–V triple‐junction cell) to harvest diffuse sunlight. The results of outdoor experiments showed that the low‐cost cell enhanced the generated power by factors of 1.39 and 1.63 for high‐DNI and midrange‐DNI conditions, respectively, and that the resultant GNI‐based module efficiencies were 32.7% and 25.6%, respectively. © 2016 The Authors. Progress in Photovoltaics: Research and Applications published by John Wiley & Sons Ltd.  相似文献   

3.
Concentrating photovoltaic solar power plants using dual‐axis trackers are in increasing demand. In a utility‐scale photovoltaic system, both capacity factor and ground coverage ratio are widely used to characterize systems in view of the land use efficiency. Current system modeling approaches lack accurate location‐specific direct normal irradiance (DNI), miss a reliable electrical model for power optimization and conversion and are inadequate for optimizing the tracker array configuration. In this paper, a comprehensive modeling of a concentrating photovoltaic system is introduced. First, a more accurate estimation of hourly DNI is obtained by considering location‐dependent DNI and air mass changes according to the sun's elevation. Second, mismatch effects of modules are factored in. Third, various power optimization and conversion levels are taken into account for optimization with self‐shading in each module. The tracker array configuration has been optimized to maximize energy harvest by getting a maximum capacity factor for a given ground coverage ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The emerging field of stacked layers (double‐ and even multi‐layers) in organic photovoltaic cells is reviewed. Owing to the limited absorption width of organic molecules and polymers, only a small fraction of the solar flux can be harvested by a single‐layer bulk heterojunction photovoltaic cell. Furthermore, the low charge‐carrier mobilities of most organic materials limit the thickness of the active layer. Consequently, only part of the intensity of the incident light at the absorption maximum is absorbed. A tandem or multi‐junction solar cell, consisting of multiple layers each with their specific absorption maximum and width, can overcome these limitations and can cover a larger part of the solar flux. In addition, tandem or multi‐junction solar cells offer the distinct advantage that photon energy is used more efficiently, because the voltage at which charges are collected in each sub‐cell is closer to the energy of the photons absorbed in that cell. Recent developments in both small‐molecule and polymeric photovoltaic cells are discussed, and examples of photovoltaic architectures, geometries, and materials combinations that result in tandem and multi‐junction solar cells are presented.  相似文献   

5.
Reducing the optical losses and increasing the reflection while maintaining the function of doped layers at the back contact in solar cells are important issues for many photovoltaic applications. One approach is to use doped microcrystalline silicon oxide (μc‐SiOx:H) with lower optical absorption in the spectral range of interest (300 nm to 1100 nm). To investigate the advantages, we applied the μc‐SiOx:H n‐layers to a‐Si:H single junction solar cells. We report on the comparison between amorphous silicon (a‐Si:H) single junction solar cells with either μc‐SiOx:H n‐layers or non‐alloyed silicon n‐layers. The origin of the improved performance of a‐Si:H single junction solar cells with the μc‐SiOx:H n‐layer is identified by distinguishing the contributions because of the increased transparency and the reduced refractive index of the μc‐SiOx:H material. The solar cell parameters of a‐Si:H solar cells with both types of n‐layers were compared in the initial state and after 1000 h of light soaking in a series of solar cells with various absorber layer thicknesses. The measurement procedure for the determination of the solar cell performance is described in detail, and the measurement accuracy is evaluated and discussed. For an a‐Si:H single junction solar cell with a μc‐SiOx:H n‐layer, a stabilized efficiency of 10.3% after 1000 h light soaking is demonstrated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, we discuss three empirical models and introduce one more detailed model named YieldOpt. All models can be used to calculate the power output and energy yield of concentrating photovoltaic (CPV) modules under different ambient conditions. The YieldOpt model combines various modeling approaches: simple model of the atmospheric radiative transfer of sunshine for the spectral irradiance, a finite element method for thermal expansion, ray tracing for the optics, and a SPICE network model for the triple‐junction solar cell. YieldOpt uses a number of constant and variable input parameters, for example, the external quantum efficiency of the cells, the temperature‐dependent spectral optical efficiencies of the optics, the tracking accuracy, the direct normal irradiance, the aerosol optical depth, and the temperature of the lens and the solar cell. To verify the accuracy of the models, the I‐V characteristics of five CPV modules have been measured in a 10‐min interval over a period of 1 year in Freiburg, Germany. Four modules equipped with industrial‐standard lattice‐matched triple‐junction solar cells and one module equipped with metamorphic triple‐junction solar cells are investigated. The higher accuracy of YieldOpt compared with the three empirical models in predicting the power output of all five CPV modules during this period is demonstrated. The energy yield over a period of 1 year was predicted for all five CPV modules with a maximum deviation of 5% by the three empirical models and 3% by YieldOpt. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Tandem solar cells (TSCs) comprising stacked narrow‐bandgap and wide‐bandgap subcells are regarded as the most promising approach to break the Shockley–Queisser limit of single‐junction solar cells. As the game‐changer in the photovoltaic community, organic–inorganic hybrid perovskites became the front‐runner candidate for mating with other efficient photovoltaic technologies in the tandem configuration for higher power conversion efficiency, by virtue of their tunable and complementary bandgaps, excellent photoelectric properties, and solution processability. In this review, a perspective that critically dilates the progress of perovskite material selection and device design for perovskite‐based TSCs, including perovskite/silicon, perovskite/copper indium gallium selenide, perovskite/perovskite, perovskite/CdTe, and perovskite/GaAs are presented. Besides, all‐inorganic perovskite CsPbI3 with high thermal stability is proposed as the top subcell in TSCs due to its suitable bandgap of ≈1.73 eV and rapidly increasing efficiency. To minimize the optical and electrical losses for high‐efficiency TSCs, the optimization of transparent electrodes, recombination layers, and the current‐matching principles are highlighted. Through big data analysis, wide‐bandgap perovskite solar cells with high open‐circuit voltage (Voc) are in dire need in further study. In the end, opportunities and challenges to realize the commercialization of TSCs, including long‐term stability, area upscaling, and mitigation of toxicity, are also envisioned.  相似文献   

8.
Intermediate band solar cell provides novel alternative to multi‐junction solar cell, but its efficiency is significantly degraded when spectral overlap exists between different absorption bands. Here, a scheme using non‐uniform sub‐bandgap state filling together with intermediate band transport is proposed to resolve the spectral overlap issue. On the basis of detailed balance calculation, spectrally decoupled devices using low–high state filling is shown to achieve 52.8% conversion efficiency when 4 eV spectral overlap is present between absorption coefficients of different bands, compared with baseline efficiency equal to 35.1% for conventional half‐filled intermediate band devices. If a base material without intermediate band is added to the two section low–high state filling devices, the efficiency is further increased to 61.5%, which approaches efficiency of 63.2% for intermediate band devices with no spectral overlap and 63.8% for unconstrained triple‐junction tandem cells. The junction thermalization loss associated with proposed new structures is shown to be equal to conventional half‐filled intermediate band devices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A semiconductor absorber with a single bandgap is unable to convert broadband sunlight into electricity efficiently. Photons with energy lower than the bandgap are not absorbed, whereas those with energy far higher than the bandgap lose energy via thermalization. In this Article, we demonstrate an approach to mitigate these losses via a thin, efficient broadband diffractive micro‐structured optic that not only spectrally separates incident light but also concentrates it onto multiple laterally separated single‐junction semiconductor absorbers. A fully integrated optoelectronic device model was applied in conjunction with a nonlinear optimization algorithm to design the optic. An experimental demonstration is presented for a dual‐bandgap design using GaInP and GaAs solar cells, where a 20% increase in the total electric power is measured compared with the same cells without the diffractive optic. Finally, we demonstrate that this framework of broadband diffractive optics allows us to independently design for the number of spectral bands and geometric concentration, thereby enabling a new class of multi‐bandgap photovoltaic devices with ultra‐high energy conversion efficiencies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
11.
Increasing sunlight conversion efficiency is a key driver for on‐going solar electricity cost reduction. For photovoltaic conversion, the approach most successful in increasing conversion efficiency is to split sunlight into spectral bands and direct each band to a dedicated solar cell of an appropriate energy bandgap to convert this band efficiently. In this work, we demonstrate conversion of sunlight to electricity in a solar collector with an efficiency value above 40% for the first time, using a small 287‐cm2 aperture area test stand, notably equipped with commercial concentrator solar cells. We use optical band‐pass filtering to capture energy that is normally wasted by commercial GaInP/GaInAs/Ge triple junction cells and convert this normally wasted energy using a separate Si cell with higher efficiency than physically possible in the original device. The 287‐cm2 aperture area sunlight‐concentrating converter demonstrating this independently confirmed efficiency is a prototype for a large photovoltaic power tower system, where sunlight is reflected from a field of sun‐tracking heliostats to a dense photovoltaic array mounted on a central tower. In such systems, improved efficiency not only reduces costs by increasing energy output for a given investment in heliostats and towers but also reduces unwanted heat generation at the central tower. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, we practically demonstrated spectrum‐splitting approach for advances in efficiency of photovoltaic cells. Firstly, a‐Si:H//c‐Si 2‐junction configuration was designed, which exhibited 24.4% efficiency with the spectrum splitting at 620 nm. Then, we improved the top cell property by employing InGaP cells instead of the a‐Si:H, resulting in an achievement of efficiency about 28.8%. In addition, we constructed 3‐junction spectrum‐splitting system with two optical splitters, and GaAs solar cells as middle cell. This InGaP//GaAs//c‐Si architecture was found to deliver 30.9% conversion efficiency. Our splitting system includes convex lenses for light concentration about 10 suns, which provided concentrated efficiency exceeding 33.0%. These results suggest that our demonstration of 3‐junction spectrum‐splitting approach can be a promising candidate for highly efficient photovoltaic technologies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A spectral beam‐splitting architecture is shown to provide an excellent basis for a four junction photovoltaic receiver with a virtually ideal band gap combination. Spectrally selective beam‐splitters are used to create a very efficient light trap in form of a 45° parallelepiped. The light trap distributes incident radiation onto the different solar cells with an optical efficiency of more then 90%. Highly efficient solar cells including III–V semiconductors and silicon were fabricated and mounted into the light trapping assembly. An integrated characterization of such a receiver including the measurement of quantum efficiency as well as indoor and outdoor I–V measurements is shown. Moreover, the optical loss mechanisms and the optical efficiency of the spectral beam‐splitting approach are discussed. The first experimental setup of the receiver demonstrated an outdoor efficiency of more than 34% under unconcentrated sunlight. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Silicon represents an interesting material to fabricate low‐cost and relatively simple and high‐efficient solar cells in the low and medium concentration range. In this paper, we discuss a novel cell scheme conceived for concentrating photovoltaic, named emitter wrap through with deep grooved base (EWT‐DGB), and compare it with the simpler passivated emitter solar cell. Both cells have been fabricated by means of a complementary metal–oxide–semiconductor‐compatible process in our laboratory. The experimental characterization of both cells is reported in the range 1–200 suns in terms of conversion efficiency, open circuit voltage, short circuit current density and fill factor. In particular, for the EWT‐DGB solar cells, we obtain an encouraging 21.4% maximum conversion efficiency at 44 suns. By using a calibrated finite‐element numerical electro‐optical simulation tool, validated by a comparison with experimental data, we study the potentials of the two architectures for concentrated light conditions considering possible realistic improvements with respect to the fabricated devices. We compare the solar cell figures of merit with those of the state‐of‐the‐art silicon back‐contact back‐junction solar cell holding the conversion efficiency record for concentrator photovoltaic silicon. Simulation results predict a 24.8% efficiency at 50 suns for the EWT‐DGB cell and up to 23.9% at 100 suns for the passivated emitter solar cell, thus confirming the good potential of the proposed architectures for low to medium light concentration. Finally, simulations are exploited to provide additional analysis of the EWT‐DGB scheme under concentrated light. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, the theoretical efficiency of multi‐junction solar cells based on group IV elements has been investigated. The effects of different absorbing layer numbers, different band gap combinations, and temperature changes have been reviewed for multi‐spectral solar cells. Several simulations were done to identify the ideal band gap combination for triple‐junction solar cells. Based on these results and under consideration of actual material parameters, a new promising triple‐junction solar cell concept with a‐Si:H/µc‐Si:H/ and µc‐Ge:H has been found for developing high efficiency thin film solar cells. Additionally, advanced simulations were performed in order to evaluate the feasibility of this new concept. The photocurrent, the external quantum efficiency, and the layer thicknesses were simulated and evaluated. All parameters deliver promising results for a new triple‐junction solar cell concept with an intermediate reflector between the middle‐ and bottom structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The solar power conversion efficiency of a gallium indium phosphide(GaInP)/silicon(Si)tandem solar cell has been investigated by means of a physical device simulator considering both mechanically stacked and monolithic structures.In particular,to interconnect the bottom and top sub-cells of the monolithic tandem,a gallium arsenide(GaAs)-based tunnel-junction,i.e.GaAs(n+)/GaAs(p+),which assures a low electrical resistance and an optically low-loss connection,has been considered.The J–V characteristics of the single junction cells,monolithic tandem,and mechanically stacked structure have been calculated extracting the main photovoltaic parameters.An analysis of the tunnel-junction behaviour has been also developed.The mechanically stacked cell achieves an efficiency of 24.27%whereas the monolithic tandem reaches an efficiency of 31.11%under AM1.5 spectral conditions.External quantum efficiency simulations have evaluated the useful wavelength range.The results and discussion could be helpful in designing high efficiency monolithic multijunction GaInP/Si solar cells involving a thin GaAs(n+)/GaAs(p+)tunnel junction.  相似文献   

17.
A novel, camera-based method for direct implied open-circuit voltage (iVOC) imaging via the use of a single bandpass filter (s-BPF) is developed for large-area photovoltaic solar cells and precursors. The photoluminescence (PL) emission is imaged using a narrow BPF with centre energy inside the high-energy tail of the PL emission, utilising the close-to-unity and nearly constant absorptivity of typical photovoltaic devices in this energy range. As a result, the exact value of the sample's absorptivity within the BPF transmission band is not required. The use of an s-BPF enables a fully contactless approach to calibrate the absolute PL photon flux for spectrally integrated detectors, including cameras. The method eliminates the need for knowledge of the imaging system spectral response. Through an appropriate choice of the BPF centre energy, a range of absorber compositions or a single absorber with different surface morphologies, such as planar and textured, can be imaged, all without the need for additional detection optics. The feasibility of this s-BPF method is first validated. The relative error in iVOC is determined to be ≤1.5%. The method is then demonstrated on device stacks with two different perovskite compositions commonly used in single-junction and monolithic tandem solar cells.  相似文献   

18.
The electro‐optics of thin‐film stacks within photovoltaic devices plays a critical role for the exciton and charge generation and therefore the photovoltaic performance. The complex refractive indexes of each layer in heterojunction colloidal quantum dot (CQD) solar cells are measured and the optical electric field is simulated using the transfer matrix formalism. The exciton generation rate and the photocurrent density as a function of the quantum dot solid thickness are calculated and the results from the simulations are found to agree well with the experimentally determined results. It can therefore be concluded that a quantum dot solid may be modeled with this approach, which is of general interest for this type of materials. Optimization of the CQD solar cell is performed by using the optical simulations and a maximum solar energy conversion efficiency of 6.5% is reached for a CQD solid thickness of 300 nm.  相似文献   

19.
III‐V Multi Junction (MJ) solar cells based on Light Emitting Diode (LED) technology have been proposed and developed in recent years as a way of producing cost‐competitive photovoltaic electricity. As LEDs are similar to solar cells in terms of material, size and power, it is possible to take advantage of the huge technological experience accumulated in the former and apply it to the latter. This paper analyses the most important parameters that affect the operational lifetime of the device (crystalline quality, temperature, current density, humidity and photodegradation), taking into account experience on the reliability of LEDs. Most of these parameters are less stressed for a III‐V MJ solar cell working at 1000 suns than for a high‐power LED. From this analysis, some recommendations are extracted for improving the long‐term reliability of the solar cells. Compared to high‐power LEDs based on compound semiconductors, it is possible to achieve operational lifetimes higher than 105 hours (34 years of real‐time operation) for III‐V high‐concentration solar cells. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
New generation photovoltaic (PV) devices such as polymer and dye sensitized solar cells (DSC) have now reached a more mature stage of development, and among their various applications, building integrated PVs seems to have the most promising future, especially for DSC devices. This new generation technology has attracted an increasing interest because of its low cost due to the use of cheap printable materials and simple manufacturing techniques, easy production, and relatively high efficiency. As for the more consolidated PV technologies, DSCs need to be tested in real operating conditions and their performance compared with other PV technologies to put into evidence the real potential. This work presents the results of a 3 months outdoor monitoring activity performed on a DSC mini‐panel made by the Dyepower Consortium, positioned on a south oriented vertical plane together with a double junction amorphous silicon (a‐Si) device and a multi‐crystalline silicon (m‐Si) device at the ESTER station of the University of Rome Tor Vergata. Good performance of the DSC mini‐panel has been observed for this particular configuration, where the DSC energy production compares favorably with that of a‐Si and m‐Si especially at high solar angles of incidence confirming the suitability of this technology for the integration into building facades. This assumption is confirmed by the energy produced per nominal watt‐peak for the duration of the measurement campaign by the DSC that is 12% higher than that by a‐Si and only 3% lower than that by m‐Si for these operating conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号