首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
This study discusses the effect of formulation composition on the physical characteristics and drug release behavior of controlled‐release formulations made by roller compaction. The authors used mixture experimental design to study the effect of formulation components using diclofenac sodium as the model drug substance and varying relative amounts of microcrystalline cellulose (Avicel), hydroxypropyl methylcellulose (HPMC), and glyceryl behenate (Compritol). Dissolution studies revealed very little variability in drug release. The t70 values for the 13 formulations were found to vary between 260 and 550 min. A reduced cubic model was found to best fit the t70 data and gave an adjusted r‐square of 0.9406. Each of the linear terms, the interaction terms between Compritol and Avicel and between all three of the tested factors were found to be significant. The longest release times were observed for formulations having higher concentrations of HPMC or Compritol. Tablets with higher concentrations of Avicel showed reduced ability to retard the release of the drug from the tablet matrix. Crushing strength showed systematic dependence on the formulation factors and could be modeled using a reduced quadratic model. The crushing strength values were highest at high concentrations of Avicel, while tablets with a high level of Compritol showed the lowest values. A predicted optimum formulation was derived by a numerical, multiresponse optimization technique. The validity of the model for predicting physical attributes of the product was also verified by experiment. The observed responses from the calculated optimum formulation were in very close agreement with values predicted by the model. The utility of a mixture experimental design for selecting formulation components of a roller compacted product was demonstrated. These simple statistical tools can allow a formulator to rationally select levels of various components in a formulation, improve the quality of products, and develop more robust processes.  相似文献   

2.
This study investigates the effects of three factors: (1) use of a mixture of two different grades of hydroxypropyl methylcellulose (HPMC), (2) apparent viscosity, and (3) tablet hardness on drug release profiles of extended-release matrix tablets. The lot-to-lot apparent viscosity difference of HPMC K15M on in vitro dissolution was also investigated. Four test formulations were made, each containing 10% of a very water-soluble active pharmaceutical ingredient (API), 32% HPMC K15M, or a mixture of HPMC K100LV and HPMC K100M, 56% diluents, and 2% lubricants. Each formulation was made at two hardness levels. A 23 full factorial design was used to study various combinations of the three factors using eight experiments conducted in a randomized order. Dissolution studies were performed in USP apparatus I. The values of t50% (time in which 50% drug is released) and tlag (lag time, the time taken by the matrix tablet edges to get hydrated and achieve a state of quasi-equilibrium before erosion and the advance of solvent front through the matrix occur) were calculated from each dissolution profile. The similarity factor (f2) was also calculated for each dissolution profile against the target dissolution profile. A simple Higuchi-type equation was used to analyze the drug release profiles. Statistical analysis using analysis of variance (ANOVA) and similarity factor (f2) values calculated from the data indicated no significant difference among the t50% values and dissolution profiles respectively for all formulations. Within the 3.3-6 kp hardness range investigated, dissolution rates were found to be independent of tablet hardness for all the formulations. Although significantly shorter lag times were observed for the tablets formulated with low- and high-viscosity HPMC mixtures in comparison to those containing a single grade of HPMC, this change had no significant impact on the overall dissolution profiles indicated by the similarity factor f2 values. From this study it can be concluded that lot-to-lot variability in apparent viscosity of HPMC should not be a concern in achieving similar dissolution profiles. Also, results indicated that within the viscosity range studied (12,000-19,500 cps) an HPMC mixture of two viscosity grades can be substituted for another HPMC grade if the apparent viscosity is comparable. Also, the drug release is diffusion-controlled and depends mostly on the viscosity of the gel layer formed.  相似文献   

3.
The study was designed to investigate the feasibility of developing a transdermal drug dosage form of promethazine hydrochloride (PMH). The in vitro release and diffusion characteristics of PMH from various dermatological polymeric bases were studied using cellulose membrane and hairless mouse skin as the diffusion barriers. These included polyethylene glycol (PEG), hydroxypropyl methylcellulose (HPMC), cross-linked microcrystalline cellulose, and carboxyl methyl cellulose sodium (Avicel CL-611), and a modified hydrophilic ointment USP. In addition, the effects of several additive ingredients known to enhance the drug release from topical formulations were evaluated. The general rank order for the drug release from these formulations using cellulose membrane was observed to be PEG > HMPC > Avicel CL-611 > hydrophilic ointment base. The inclusion of the additives had little or no effect on the drug diffusion from these bases, except for the hydrophilic ointment formulation containing 15% ethanol, which provided a significant increase in the drug release. However, when these formulations were studied for drug diffusion through the hairless mouse skin, the Avicel CL-611 base containing 15% ethanol exhibited the optimum drug release. The data also revealed that this formulation gave the highest steady-state flux, diffusion, and permeability coefficient values and correlated well with the amount of drug release.  相似文献   

4.
The development of monolithic matrices with controlled release and mucosa-adhesive properties was investigated. After an initial screening procedure for formulations that showed stability and minimal swelling, the rate of release of a model water soluble drug from various polyacrylic acid containing matrices was evaluated. All the formulations gave a prolonged drug release relative to a lactose containing control formulation. A formulation containing Carbopol 934P and CaCl2, was found to give the slowest rate of drug release (t50% of 7.77h), with release kinetics nearest to the ideal zero order. When tested in a modified tensiometer it was found that the inclusion of a relatively high loading of a model drug did not adversely affect the adhesive properties of these formulations.  相似文献   

5.
The study was designed to investigate the feasibility of developing a transdermal drug dosage form of promethazine hydrochloride (PMH). The in vitro release and diffusion characteristics of PMH from various dermatological polymeric bases were studied using cellulose membrane and hairless mouse skin as the diffusion barriers. These included polyethylene glycol (PEG), hydroxypropyl methylcellulose (HPMC), cross-linked microcrystalline cellulose, and carboxyl methyl cellulose sodium (Avicel® CL-611), and a modified hydrophilic ointment USP. In addition, the effects of several additive ingredients known to enhance the drug release from topical formulations were evaluated. The general rank order for the drug release from these formulations using cellulose membrane was observed to be PEG > HMPC > Avicel CL-611 > hydrophilic ointment base. The inclusion of the additives had little or no effect on the drug diffusion from these bases, except for the hydrophilic ointment formulation containing 15% ethanol, which provided a significant increase in the drug release. However, when these formulations were studied for drug diffusion through the hairless mouse skin, the Avicel CL-611 base containing 15% ethanol exhibited the optimum drug release. The data also revealed that this formulation gave the highest steady-state flux, diffusion, and permeability coefficient values and correlated well with the amount of drug release.  相似文献   

6.
Sustained-release polymer beads containing diclofenac sodium (DNa) dispersed in Compritol 888 and encapsulated in calcium alginate shell were prepared utilizing 23 factorial design. The effect of sodium alginate concentration, drug:Compritol 888 weight ratio and CaCl2 concentration on drug content (%), time for 50% and 80% of the drug to be released, and mean dissolution time (MDT) were evaluated with analysis of variance (ANOVA). An increase in the level of all these factors caused retardation in the release, and t50%, t80%, and MDT were increased. The drug release was dependent on the pH of the release media. A formula that gives a release comparable to commercial products was prepared.  相似文献   

7.
A new autocompressible vehicle, Musol, obtained by chemical modification of an edible seed polysaccharide was evaluated for direct compression properties, A Hausner ratio of 1,2 and percent compressibility of 16.7 obtained for Musol indicate that it has very good flow properties. Musol showed superiority over Avicel PH 101, USP Fast-Flo lactose, and Encompress when evaluated in terns of flow rake of powders and moisture sorption by both powders and their slugs, Compacts prepared with Musol were found to disintegrate by erosion and therefore did not perform as well as either alginic acid or Ac-disol in 250 mg Sulphadimidine tablets. However, good drug release was obtained from aspirin tablets containing 5% w/w Musol as a dry binder. The t50, t90 and Dissolution efficiency were as good as the values obtained with 5% w/w Avicel PH 101, A 50/50 blend of Musol and Avicel PH 101 surpassed other blends in performance.  相似文献   

8.
A time-delayed oral drug delivery device was investigated in which an erodible tablet (ET), sealing the mouth of an insoluble capsule, controlled the lag-time prior to drug release. The time-delayed capsule (TDC) lag-time may be altered by manipulation of the excipients used in the preparation of the ET. Erosion rates and drug release profiles from TDCs were investigated with four different excipient admixtures with lactose: calcium sulphate dihydrate (CSD), dicalcium phosphate (DCP), hydroxypropylmethyl cellulose (HPMC; Methocel® K100LV grade) and silicified microcrystalline cellulose (SMCC; Prosolv® 90 grade). Additionally, the compressibility of different insoluble coated capsules was tested at different moisture levels to determine their overall integrity and suitability for oral delivery. Erosion rates of CSD, DCP, and SMCC displayed a nonlinear relationship to their concentration, while HPMC indicated rapid first-order erosion followed by zero-order erosion, the onset of which was dependent on the HPMC concentration. Capsule integrity was confirmed to be most suitable for oral delivery when the insoluble ethyl cellulose coat was applied to a hard gelatin capsule using an organic spray coating process. T50% drug release times varied between 245 (± 33.4) and 393 (± 40.8) minutes for 8% and 20% DCP, respectively, T50% release times of 91 (± 22.1) and 167 (± 34.6) were observed for 8% and 20% CSD; both formulations showed incidence of premature drug release. The SMCC formulations showed high variability due to lamination effects. The HPMC formulations had T50% release times of 69 (± 13.9), 213 (± 25.4), and 325 (± 30.3) minutes for 15%, 24%, and 30% HPMC concentrations respectively, with no premature drug release. In conclusion, HPMC showed the highest reproducibility for a range of time-delayed drug release from the assembled capsule formulation. The method of capsule coating was confirmed to be important by investigation of the overall capsule integrity at elevated humidity levels. The erosion characteristics of ETs containing HPMC may be described by gravimetric loss. The novel time-delayed capsule device presented in this study may be assembled to include an erodible tablet with a known concentration of HPMC. A variety of suitable drugs for targeted chronopharmaceutical therapy can beincorporated into such a device, ultimately improving drug efficacy and patient compliance, and reducing harmful side effects.  相似文献   

9.
ABSTRACT

This study investigates the effects of three factors: (1) use of a mixture of two different grades of hydroxypropyl methylcellulose (HPMC), (2) apparent viscosity, and (3) tablet hardness on drug release profiles of extended-release matrix tablets. The lot-to-lot apparent viscosity difference of HPMC K15M on in vitro dissolution was also investigated. Four test formulations were made, each containing 10% of a very water-soluble active pharmaceutical ingredient (API), 32% HPMC K15M, or a mixture of HPMC K100LV and HPMC K100M, 56% diluents, and 2% lubricants. Each formulation was made at two hardness levels. A 23 full factorial design was used to study various combinations of the three factors using eight experiments conducted in a randomized order. Dissolution studies were performed in USP apparatus I. The values of t50% (time in which 50% drug is released) and tlag (lag time, the time taken by the matrix tablet edges to get hydrated and achieve a state of quasi-equilibrium before erosion and the advance of solvent front through the matrix occur) were calculated from each dissolution profile. The similarity factor (f2) was also calculated for each dissolution profile against the target dissolution profile. A simple Higuchi-type equation was used to analyze the drug release profiles. Statistical analysis using analysis of variance (ANOVA) and similarity factor (f2) values calculated from the data indicated no significant difference among the t50% values and dissolution profiles respectively for all formulations. Within the 3.3–6 kp hardness range investigated, dissolution rates were found to be independent of tablet hardness for all the formulations. Although significantly shorter lag times were observed for the tablets formulated with low- and high-viscosity HPMC mixtures in comparison to those containing a single grade of HPMC, this change had no significant impact on the overall dissolution profiles indicated by the similarity factor f2 values. From this study it can be concluded that lot-to-lot variability in apparent viscosity of HPMC should not be a concern in achieving similar dissolution profiles. Also, results indicated that within the viscosity range studied (12,000–19,500 cps) an HPMC mixture of two viscosity grades can be substituted for another HPMC grade if the apparent viscosity is comparable. Also, the drug release is diffusion-controlled and depends mostly on the viscosity of the gel layer formed.  相似文献   

10.
The objective of this research was to evaluate the effect of hydroxypropylmethylcellulose (HPMC; Methocel K4M Premium) level and type of excipient on theophylline release and to attempt to predict the drug release from hydrophilic swellable matrices. Formulations containing theophylline anhydrous (10% w/w), Methocel K4M Premium (10%, 30%, and 40% w/w), different diluents (Lactose Fast Flo, Avicel PH-101, and Emcompress), and magnesium stearate (0.75% w/w) were prepared by direct compression at a target weight of 450 mg ± 5% and target hardness of 7 kp to 10 kp. It was found that, as the percentage of polymer in all formulations increased from 10% to 30% or 40%, the drug release decreased. However, there was no significant difference in drug release between formulations containing 30% polymer and formulations containing 40% polymer. At low levels of polymer, the drug release is controlled by the type of diluent used. Avicel PH-101 formulation gave the highest release, while its corresponding Emcompress formulation gave the lowest release. Formulations containing 30% or 40% polymer gave the same release profiles irrespective of the type of diluent used. In all cases, replacement of a portion of Methocel K4M Premium with any diluent resulted in increase of theophylline release. In addition, this investigation demonstrated that the drug release from hydrophilic swellable matrices can be predicted using only a minimum number of experiments.  相似文献   

11.
The objective of this research was to evaluate the effect of hydroxypropylmethylcellulose (HPMC; Methocel K4M Premium) level and type of excipient on theophylline release and to attempt to predict the drug release from hydrophilic swellable matrices. Formulations containing theophylline anhydrous (10% w/w), Methocel K4M Premium (10%, 30%, and 40% w/w), different diluents (Lactose Fast Flo, Avicel PH-101, and Emcompress), and magnesium stearate (0.75% w/w) were prepared by direct compression at a target weight of 450 mg ± 5% and target hardness of 7 kp to 10 kp. It was found that, as the percentage of polymer in all formulations increased from 10% to 30% or 40%, the drug release decreased. However, there was no significant difference in drug release between formulations containing 30% polymer and formulations containing 40% polymer. At low levels of polymer, the drug release is controlled by the type of diluent used. Avicel PH-101 formulation gave the highest release, while its corresponding Emcompress formulation gave the lowest release. Formulations containing 30% or 40% polymer gave the same release profiles irrespective of the type of diluent used. In all cases, replacement of a portion of Methocel K4M Premium with any diluent resulted in increase of theophylline release. In addition, this investigation demonstrated that the drug release from hydrophilic swellable matrices can be predicted using only a minimum number of experiments.  相似文献   

12.
The purpose of this study was to apply the optimization method incorporating artificial neural network (ANN) using pH-independent release of weakly basic drug, carvedilol from HPMC-based matrix formulation. Because of weakly basic nature of carvedilol, drug shows pH-dependent solubility. The enteric polymer EUDRAGIT L100 was added formulations to overcome pH-dependent solubility of carvedilol. Effects of the Hydroxypropylmethyl cellulose (HPMC) K4M and EUDRAGIT L100 amount on drug release were investigated. For this purpose 13 kinds of formulations were prepared at three different levels of each variables. The optimization of the formulation was evaluated by using ANN method. Two formulation parameters, the amounts of HPMC K4M and Eudragit L100 at three levels (?1, 0, 1) were selected as independent/input variables. In-vitro dissolution sampling times at twelve different time points were selected as dependent/output variables. By using experimental dissolution results and amount of HPMC K4M and EUDRAGIT L100, percentage of dissolved carvedilol was predicted by ANN. Similarity factor (f2) between predicted and experimentally observed profile was calculated and f2 value was found 76.33. This value showed that there was no difference between predicted and experimentally observed drug release profile. As a result of these experiments, it was found that ANNs can be successfully used to optimize controlled release drug delivery systems.  相似文献   

13.
ABSTRACT

Buccoadhesives have long been employed to improve the bioavailability of drugs undergoing significant hepatic first-pass metabolism. Diltiazem hydrochloride (DLZ) is also reported to have low oral bioavailability due to an extensive hepatic first-pass effect. Controlled-release buccoadhesive hydrophilic matrices containing DLZ were prepared using a 32 factorial design. Amounts of Carbopol® 934P (CP) and Methocel® K100LV (HPMC) were taken as the formulation variables (factors) for optimizing bioadhesion, and kinetics of dissolution and diffusion. A mathematical model was generated for each response parameter. Bioadhesive strength tended to vary quite linearly in increasing order with increasing amount of each polymer. The drug release pattern for all the formulation combinations was found to be non-fickian, approaching zero-order kinetics. The values of permeation coefficient tended to vary non-linearly with polymer amount, depicting the plausibility of interaction between the two polymers. Suitable combinations of the two polymers provided adequate bioadhesive strength and a fairly regulated release profile up to 10 hr. The response surfaces and contour plots for each response parameter are presented for further interpretation of the results. The optimum formulations were chosen and their predicted results found to be in close agreement with experimental findings.  相似文献   

14.
The purpose of this study was to prepare sustained-release pellets of nifedipine (NSPs) based on MCC matrix. Wet-milling and extrusion-spheronization techniques were employed to prepare the microcrystals and pellets, respectively. The drug release mechanism and the influencing factors were investigated. After milled with HPMC (E5), the mean particle size of nifedipine in co-grinding mixture (CGM) was 5?μm, which is 15-fold smaller than that of raw material. DSC, X-ray powder diffraction and microscopic observation confirmed the microcrystals of drug were maintained in the CGM. With increased milling time and the content of HPMC, the dissolution rate was greatly enhanced compared with the raw material. The NSPs prepared by MCC and the CGM, which was obtained by cogrinding nifedipine with 5% HPMC solution for 210?min, exhibited sustained release pattern within 8?h. Nifedipine release from MCC-based NSPs followed the Korsmeyer model and closely related to the microstructure of pellet. High stability of NSPs was confirmed after 6 months of accelerated stability test. Using commercially available sustained product as reference, bioequivalence study in beagle dogs was executed and two formulations were bioequivalent. This sustained release pellet formulation of nifedipine was advantageous with convenient and easy scaled-up preparation process.  相似文献   

15.
Transdermal patches of verapamil hydrochloride were prepared using four different polymers (individual and combination): Eudragit RL100 (ERL100), Eudragit RS100 (ERS100), hydroxypropyl methylcellulose 15 cps (HPMC), and ethyl cellulose (EC), of varying degrees of hydrophilicity and hydrophobicity. The effect of the polymers on the technological properties, i.e., drug release, water vapor transmission rate (WVTR), and percentage moisture loss (ML), percentage moisture absorption (MA), folding endurance, and thickness, was investigated. Different formulations were prepared in accordance with the 23 factorial design, with ERL100 being the parent polymer. The patch containing ERL100 alone showed maximum WVTR, % MA, and % ML, which could be attributed to its hydrophilic nature. As expected, substitution with ERS100, HPMC, and EC decreased all the above values in accordance with their decreasing degree of hydrophilicity. In vitro release studies showed zero-order release of the drug from all the patches, and the mechanism of release was diffusion mediated. Moreover, the release of the drug was sustained and it extended over a period of 24 hr in all formulations. A12 emerged as the most satisfactory formulation insofar as its technological properties were concerned. Further, release and permeation of the drug from the most satisfactory formulation (A12) was evaluated through different biological barriers (shed snake skin, rabbit skin, and rat skin) to get an idea of the drug permeation through human skin. Shed snake's skin was found to be most permeable (82.56% drug release at 24 hr) and rat skin was least permeable (52.38%). Percutaneous absorption studies were carried out in rabbits. The pharmacokinetic parameters calculated from blood levels of the drug revealed a profile typical of a sustained release formulation, with the ability to maintain adequate plasma levels for 24 hr. [AUC: 3.09 mg/mL hr, Cmax: 203.95 µg/mL, Tmax: 8 hr]. It can therefore be concluded that the patch containing ERL100 and HPMC in the ratio 8:2 has achieved the objectives of transdermal drug delivery system, such as avoidance of first pass effect, extended release, and reduced frequency of administration.  相似文献   

16.
Background: The influence of β-cyclodextrin (β-CD) polymers on drug release from hydroxypropyl methylcellulose (HPMC) matrices has not been reported in the literature. Aim: The influence of monomeric β-CD and both soluble and insoluble β‐CD polymers on drug release from tablets containing either 30% or 50% hydroxypropyl methylcellulose has been studied using diflunisal (DF) as model drug. Method: The DF-β-CD inclusion complex (1:1 M) was prepared by coevaporation and characterised using X-ray diffraction, differential thermal analysis, and IR spectroscopy. The dissolution assays were performed according to the USP paddle method. Results: The incorporation of β-CD in the complexed form increases drug release from hydroxypropyl methylcellulose tablets in comparison with the physical mixture because of the better solubilization of the drug. The soluble polymer promotes drug release to a higher extent than the physical mixture with monomeric β-CD, but the insoluble polymer, which is itself a hydrogel, gives rise to the most retarded release profile, probably by retention of the drug in its structure. The formulations containing physical mixtures with either β‐CD or the soluble polymer present an optimum adjustment to zero-order release kinetics, and the inclusion complex followed non-Fickian diffusion according to the Korsmeyer–Peppas model. Conclusion: The release profile of DF from a HPMC matrix can be modulated in different ways by the use of either monomeric or polymeric β-CD.  相似文献   

17.
Selected combinations of six model drugs and four hypromellose (USP 2208) viscosity grades were studied utilizing direct compression and in vitro dissolution testing. Experimental HPMC samples with differing particle size distributions (coarse, fine, narrow, bimodal) were generated by sieving. For some formulations, the impact of HPMC particle size changes was characterized by faster drug release and an apparent shift in drug release mechanism when less than 50% of the HPMC passed through a 230 mesh (63 μm) screen. Within the ranges studied, drug release from other formulations appeared to be unaffected by HPMC particle size changes.  相似文献   

18.
Selected combinations of six model drugs and four hypromellose (USP 2208) viscosity grades were studied utilizing direct compression and in vitro dissolution testing. Experimental HPMC samples with differing particle size distributions (coarse, fine, narrow, bimodal) were generated by sieving. For some formulations, the impact of HPMC particle size changes was characterized by faster drug release and an apparent shift in drug release mechanism when less than 50% of the HPMC passed through a 230 mesh (63 μm) screen. Within the ranges studied, drug release from other formulations appeared to be unaffected by HPMC particle size changes.  相似文献   

19.
The in vitro dissolution of model formulations from hard gelatin capsules containing drug: diluent powder mixtures at different moisture levels has been studied. The capsules were filled to a constant porosity of 50%. to contain either sodium barbitone or barbitone in 50:50 mixture with lactose or maize starch, the latter at one of three moisture levels. In addition, capsules containing drug alone were examined. The wettability and polarity indeces of the individual powders and binary mixtures, as well as the permeability and liquid penetration rates of powder beds were also determined.

The presence of either excipient was found to modify the time for 50% drug dissolution (t50) compared with drug alone for all formulations examined, apart from the sodium barbitone: lactose capsules. The rate of drug dissolution was also dependent on the initial powder moisture content for the drug:starch formulations. Open storage of capsules at 20%/75%. R.lt. generally increased t50figures.

The findings are discussed in terms of the nature of the surfaces of the powder particles, moisture sorption phenomena and factors such as powder bed permeability and water penetitration lates.  相似文献   

20.
Cellulose derivatives are the most frequently used polymers in formulations of pharmaceutical products for controlled drug delivery. The main aim of the present work was to evaluate the effect of different cellulose substitutions on the release rate of ibuprofen (IBP) from hydrophilic matrix tablets. Thus, the release mechanism of IBP with methylcellulose (MC25), hydroxypropylcellulose (HPC), and hydroxypropylmethylcellulose (HPMC K15M or K100M) was studied. In addition, the influence of the diluents lactose monohydrate (LAC) and β-cyclodextrin (β-CD) was evaluated. Distinct test formulations were prepared containing: 57.14% of IBP, 20.00% of polymer, 20.29% of diluent, 1.71% of talc lubricants, and 0.86% of magnesium stearate as lubricants. Although non-negligible drug-excipient interactions were detected from DSC studies, these were found not to constitute an incompatibility effect. Tablets were examined for their drug content, weight uniformity, hardness, thickness, tensile strength, friability, porosity, swelling, and dissolution performance. Polymers MC25 and HPC were found to be unsuitable for the preparation of this kind of solid dosage form, while HPMC K15M and K100M showed to be advantageous. Dissolution parameters such as the area under the dissolution curve (AUC), the dissolution efficiency (DE20 h), dissolution time (t 50%), and mean dissolution time (MDT) were calculated for all the formulations, and the highest MDT values were obtained with HPMC indicating that a higher value of MDT signifies a higher drug retarding ability of the polymer and vice-versa. The analysis of the drug release data was performed in the light of distinct kinetic mathematical models—Kosmeyer-Peppas, Higuchi, zero-, and first-order. The release process was also found to be slightly influenced by the kind of diluent used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号