首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various flight navigation strategies for birds have been identified at the large spatial scales of migratory and homing behaviours. However, relatively little is known about close-range obstacle negotiation through cluttered environments. To examine obstacle flight guidance, we tracked pigeons (Columba livia) flying through an artificial forest of vertical poles. Interestingly, pigeons adjusted their flight path only approximately 1.5 m from the forest entry, suggesting a reactive mode of path planning. Combining flight trajectories with obstacle pole positions, we reconstructed the visual experience of the pigeons throughout obstacle flights. Assuming proportional–derivative control with a constant delay, we searched the relevant parameter space of steering gains and visuomotor delays that best explained the observed steering. We found that a pigeon''s steering resembles proportional control driven by the error angle between the flight direction and the desired opening, or gap, between obstacles. Using this pigeon steering controller, we simulated obstacle flights and showed that pigeons do not simply steer to the nearest opening in the direction of flight or destination. Pigeons bias their flight direction towards larger visual gaps when making fast steering decisions. The proposed behavioural modelling method converts the obstacle avoidance behaviour into a (piecewise) target-aiming behaviour, which is better defined and understood. This study demonstrates how such an approach decomposes open-loop free-flight behaviours into components that can be independently evaluated.  相似文献   

2.
Collective navigation demands that group members reach consensus on which path to follow, a task that might become more challenging when the group''s members have different social connections. Group decision-making mechanisms have been studied successfully in the past using individual-based modelling, although many of these studies have neglected the role of social connections between the group''s interacting members. Nevertheless, empirical studies have demonstrated that individual recognition, previous shared experiences and inter-individual familiarity can influence the cohesion and the dynamics of the group as well as the relative spatial positions of specific individuals within it. Here, we use models of collective motion to study the impact of social relationships on group navigation by introducing social network structures into a model of collective motion. Our results show that groups consisting of equally informed individuals achieve the highest level of accuracy when they are hierarchically organized with the minimum number of preferred connections per individual. We also observe that the navigational accuracy of a group will depend strongly on detailed aspects of its social organization. More specifically, group navigation does not only depend on the underlying social relationships, but also on how much weight leading individuals put on following others. Also, we show that groups with certain social structures can compensate better for an increased level of navigational error. The results have broader implications for studies on collective navigation and motion because they show that only by considering a group''s social system can we fully elucidate the dynamics and advantages of joint movements.  相似文献   

3.
Pigeons home along idiosyncratic habitual routes from familiar locations. It has been suggested that memorized visual landmarks underpin this route learning. However, the inability to experimentally alter the landscape on large scales has hindered the discovery of the particular features to which birds attend. Here, we present a method for objectively classifying the most informative regions of animal paths. We apply this method to flight trajectories from homing pigeons to identify probable locations of salient visual landmarks. We construct and apply a Gaussian process model of flight trajectory generation for pigeons trained to home from specific release sites. The model shows increasing predictive power as the birds become familiar with the sites, mirroring the animal''s learning process. We subsequently find that the most informative elements of the flight trajectories coincide with landscape features that have previously been suggested as important components of the homing task.  相似文献   

4.
Social animals commonly form aggregates that exhibit emergent collective behaviour, with group dynamics that are distinct from the behaviour of individuals. Simple models can qualitatively reproduce such behaviour, but only with large numbers of individuals. But how rapidly do the collective properties of animal aggregations in nature emerge with group size? Here, we study swarms of Chironomus riparius midges and measure how their statistical properties change as a function of the number of participating individuals. Once the swarms contain order 10 individuals, we find that all statistics saturate and the swarms enter an asymptotic regime. The influence of environmental cues on the swarm morphology decays on a similar scale. Our results provide a strong constraint on how rapidly swarm models must produce collective states. But our findings support the feasibility of using swarms as a design template for multi-agent systems, because self-organized states are possible even with few agents.  相似文献   

5.
One of the most impressive features of moving animal groups is their ability to perform sudden coherent changes in travel direction. While this collective decision can be a response to an external alarm cue, directional switching can also emerge from the intrinsic fluctuations in individual behaviour. However, the cause and the mechanism by which such collective changes of direction occur are not fully understood yet. Here, we present an experimental study of spontaneous collective turns in natural flocks of starlings. We employ a recently developed tracking algorithm to reconstruct three-dimensional trajectories of each individual bird in the flock for the whole duration of a turning event. Our approach enables us to analyse changes in the individual behaviour of every group member and reveal the emergent dynamics of turning. We show that spontaneous turns start from individuals located at the elongated tips of the flocks, and then propagate through the group. We find that birds on the tips deviate from the mean direction of motion much more frequently than other individuals, indicating that persistent localized fluctuations are the crucial ingredient for triggering a collective directional change. Finally, we quantitatively verify that birds follow equal-radius paths during turning, the effects of which are a change of the flock''s orientation and a redistribution of individual locations in the group.  相似文献   

6.
Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth''s magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species.  相似文献   

7.
We identify a unique viewpoint on the collective behaviour of intelligent agents. We first develop a highly general abstract model for the possible future lives these agents may encounter as a result of their decisions. In the context of these possibilities, we show that the causal entropic principle, whereby agents follow behavioural rules that maximize their entropy over all paths through the future, predicts many of the observed features of social interactions among both human and animal groups. Our results indicate that agents are often able to maximize their future path entropy by remaining cohesive as a group and that this cohesion leads to collectively intelligent outcomes that depend strongly on the distribution of the number of possible future paths. We derive social interaction rules that are consistent with maximum entropy group behaviour for both discrete and continuous decision spaces. Our analysis further predicts that social interactions are likely to be fundamentally based on Weber''s law of response to proportional stimuli, supporting many studies that find a neurological basis for this stimulus–response mechanism and providing a novel basis for the common assumption of linearly additive ‘social forces’ in simulation studies of collective behaviour.  相似文献   

8.
Collective phenomena, whereby agent–agent interactions determine spatial patterns, are ubiquitous in the animal kingdom. On the other hand, movement and space use are also greatly influenced by the interactions between animals and their environment. Despite both types of interaction fundamentally influencing animal behaviour, there has hitherto been no unifying framework for the models proposed in both areas. Here, we construct a general method for inferring population-level spatial patterns from underlying individual movement and interaction processes, a key ingredient in building a statistical mechanics for ecological systems. We show that resource selection functions, as well as several examples of collective motion models, arise as special cases of our framework, thus bringing together resource selection analysis and collective animal behaviour into a single theory. In particular, we focus on combining the various mechanistic models of territorial interactions in the literature with step selection functions, by incorporating interactions into the step selection framework and demonstrating how to derive territorial patterns from the resulting models. We demonstrate the efficacy of our model by application to a population of insectivore birds in the Amazon rainforest.  相似文献   

9.
Social animals can improve their decisions by attending to those made by others. The benefit of this social information must be balanced against the costs of obtaining and processing it. Previous work has focused on rational agents that respond optimally to a sequence of prior decisions. However, full decision sequences are potentially costly to perceive and process. As such, animals may rely on simpler social information, which will affect the social behaviour they exhibit. Here, I derive the optimal policy for agents responding to simplified forms of social information. I show how the behaviour of agents attending to the aggregate number of previous choices differs from those attending to just the most recent prior decision, and I propose a hybrid strategy that provides a highly accurate approximation to the optimal policy with the full sequence. Finally, I analyse the evolutionary stability of each strategy, showing that the hybrid strategy dominates when cognitive costs are low but non-zero, while attending to the most recent decision is dominant when costs are high. These results show that agents can employ highly effective social decision-making rules without requiring unrealistic cognitive capacities, and indicate likely ecological variation in the social information different animals attend to.  相似文献   

10.
Fish schools are able to display a rich variety of collective states and behavioural responses when they are confronted by threats. However, a school''s response to perturbations may be different depending on the nature of its collective state. Here we use a previously developed data-driven fish school model to investigate how the school responds to perturbations depending on its different collective states, we measure its susceptibility to such perturbations, and exploit its relation with the intrinsic fluctuations in the school. In particular, we study how a single or a small number of perturbing individuals whose attraction and alignment parameters are different from those of the main population affect the long-term behaviour of a school. We find that the responsiveness of the school to the perturbations is maximum near the transition region between milling and schooling states where the school exhibits multistability and regularly shifts between these two states. It is also in this region that the susceptibility, and hence the fluctuations, of the polarization order parameter is maximal. We also find that a significant school''s response to a perturbation only happens below a certain threshold of the noise to social interactions ratio.  相似文献   

11.
The ability of cells to undergo collective movement plays a fundamental role in tissue repair, development and cancer. Interactions occurring at the level of individual cells may lead to the development of spatial structure which will affect the dynamics of migrating cells at a population level. Models that try to predict population-level behaviour often take a mean-field approach, which assumes that individuals interact with one another in proportion to their average density and ignores the presence of any small-scale spatial structure. In this work, we develop a lattice-free individual-based model (IBM) that uses random walk theory to model the stochastic interactions occurring at the scale of individual migrating cells. We incorporate a mechanism for local directional bias such that an individual''s direction of movement is dependent on the degree of cell crowding in its neighbourhood. As an alternative to the mean-field approach, we also employ spatial moment theory to develop a population-level model which accounts for spatial structure and predicts how these individual-level interactions propagate to the scale of the whole population. The IBM is used to derive an equation for dynamics of the second spatial moment (the average density of pairs of cells) which incorporates the neighbour-dependent directional bias, and we solve this numerically for a spatially homogeneous case.  相似文献   

12.
The mechanism of self-organization resulting in coordinated collective motion has received wide attention from a range of scientists interested in both its technical and biological relevance. Models have been highly influential in highlighting how collective motion can be produced from purely local interactions between individuals. Typical models in this field are termed ‘metric’ because each individual only reacts to conspecifics within a fixed distance. A recent large-scale study has, however, provided evidence that interactions ruling collective behaviour occur between a fixed number of nearest neighbours (‘topological’ framework). Despite their importance in clarifying the nature of the mechanism underlying animal interactions, these findings have yet to be produced by either metric or topological models. Here, we present an original individual-based model of collective animal motion that reproduces the previous findings. Our approach bridges the current gap between previous model analysis and recent evidence, and presents a framework for further study.  相似文献   

13.
Micro-organisms play a vital role in many biological, medical and engineering phenomena. Some recent research efforts have demonstrated the importance of biomechanics in understanding certain aspects of micro-organism behaviours such as locomotion and collective motions of cells. In particular, spatio-temporal coherent structures found in a bacterial suspension have been the focus of many research studies over the last few years. Recent studies have shown that macroscopic properties of a suspension, such as rheology and diffusion, are strongly affected by meso-scale flow structures generated by swimming microbes. Since the meso-scale flow structures are strongly affected by the interactions between microbes, a bottom-up strategy, i.e. from a cellular level to a continuum suspension level, represents the natural approach to the study of a suspension of swimming microbes. In this paper, we first provide a summary of existing biomechanical research on interactions between a pair of swimming micro-organisms, as a two-body interaction is the simplest many-body interaction. We show that interactions between two nearby swimming micro-organisms are described well by existing mathematical models. Then, collective motions formed by a group of swimming micro-organisms are discussed. We show that some collective motions of micro-organisms, such as coherent structures of bacterial suspensions, are satisfactorily explained by fluid dynamics. Lastly, we discuss how macroscopic suspension properties are changed by the microscopic characteristics of the cell suspension. The fundamental knowledge we present will be useful in obtaining a better understanding of the behaviour of micro-organisms.  相似文献   

14.
Bacteria often face fluctuating environments, and in response many species have evolved complex decision-making mechanisms to match their behaviour to the prevailing conditions. Some environmental cues provide direct and reliable information (such as nutrient concentrations) and can be responded to individually. Other environmental parameters are harder to infer and require a collective mechanism of sensing. In addition, some environmental challenges are best faced by a group of cells rather than an individual. In this review, we discuss how bacteria sense and overcome environmental challenges as a group using collective mechanisms of sensing, known as ‘quorum sensing’ (QS). QS is characterized by the release and detection of small molecules, potentially allowing individuals to infer environmental parameters such as density and mass transfer. While a great deal of the molecular mechanisms of QS have been described, there is still controversy over its functional role. We discuss what QS senses and how, what it controls and why, and how social dilemmas shape its evolution. Finally, there is a growing focus on the use of QS inhibitors as antibacterial chemotherapy. We discuss the claim that such a strategy could overcome the evolution of resistance. By linking existing theoretical approaches to data, we hope this review will spur greater collaboration between experimental and theoretical researchers.  相似文献   

15.
The evacuation of crowds from buildings or vehicles is one example that highlights the importance of understanding how individual-level interactions and decision-making combine and lead to the overall behaviour of crowds. In particular, to make evacuations safer, we need to understand how individuals make movement decisions in crowds. Here, we present an evacuation experiment with over 500 participants testing individual behaviour in an interactive virtual environment. Participants had to choose between different exit routes under the influence of three different types of directional information: static information (signs), dynamic information (movement of simulated crowd) and memorized information, as well as the combined effect of these different sources of directional information. In contrast to signs, crowd movement and memorized information did not have a significant effect on human exit route choice in isolation. However, when we combined the latter two treatments with additional directly conflicting sources of directional information, for example signs, they showed a clear effect by reducing the number of participants that followed the opposing directional information. This suggests that the signals participants observe more closely in isolation do not simply overrule alternative sources of directional information. Age and gender did not consistently explain differences in behaviour in our experiments.  相似文献   

16.
Collective migration occurs throughout the animal kingdom, and demands both the interpretation of navigational cues and the perception of other individuals within the group. Navigational cues orient individuals towards a destination, while it has been demonstrated that communication between individuals enhances navigation through a reduction in orientation error. We develop a mathematical model of collective navigation that synthesizes navigational cues and perception of other individuals. Crucially, this approach incorporates uncertainty inherent to cue interpretation and perception in the decision making process, which can arise due to noisy environments. We demonstrate that collective navigation is more efficient than individual navigation, provided a threshold number of other individuals are perceptible. This benefit is even more pronounced in low navigation information environments. In navigation ‘blindspots’, where no information is available, navigation is enhanced through a relay that connects individuals in information-poor regions to individuals in information-rich regions. As an expository case study, we apply our framework to minke whale migration in the northeast Atlantic Ocean, and quantify the decrease in navigation ability due to anthropogenic noise pollution.  相似文献   

17.
Animal groups in nature often display an enhanced collective information-processing capacity. It has been speculated that natural selection will tune this response to be optimal, ensuring that the group is reactive while also being robust to noise. Here, we show that this is unlikely to be the case. By using a simple model of decision-making in a dynamic environment, we find that when individuals behave rationally and are subject to selection based on their accuracy, optimality of collective decision-making is not attained. Instead, individuals overly rely on social information and evolve to be too readily influenced by their neighbours. This is due to a classic evolutionary conflict between individual and collective interest. The result is a sub-optimal system that is poised on the cusp of total unresponsiveness. Individuals in the evolved group exhibit delayed reactions to changes in the environment, before responding with rapid, socially reinforced transitions, reminiscent of familiar human and animal social systems (markets, stampedes, fashions, etc.). Our results demonstrate that behaviour of this type may not be pathological, but instead could represent an evolutionary attractor for such collective systems.  相似文献   

18.
The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its ‘engineered’ member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a ‘dummy’. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot''s wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot–animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.  相似文献   

19.
Animals make use a range of social information to inform their movement decisions. One common movement rule, found across many different species, is that the probability that an individual moves to an area increases with the number of conspecifics there. However, in many cases, it remains unclear what social cues produce this and other similar movement rules. Here, we investigate what cues are used by damselfish (Dascyllus aruanus) when repeatedly crossing back and forth between two coral patches in an experimental arena. We find that an individual''s decision to move is best predicted by the recent movements of conspecifics either to or from that individual''s current habitat. Rather than actively seeking attachment to a larger group, individuals are instead prioritizing highly local and dynamic information with very limited spatial and temporal ranges. By reanalysing data in which the same species crossed for the first time to a new coral patch, we show that the individuals use static cues in this case. This suggests that these fish alter their information usage according to the structure and familiarity of their environment by using stable information when moving to a novel area and localized dynamic information when moving between familiar areas.  相似文献   

20.
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator''s visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator''s consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号