首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为维持亚硝化反应器稳定运行提供微生物理论基础,以常温(18~21.5℃)低基质推流式亚硝化反应器为对象,解析其稳定运行期间功能菌群特征.通过检测反应器三氮变化检验其亚硝化效果.利用扫描电镜(SEM)观察污泥微观结构,通过荧光原位杂交(FISH)、变性梯度凝胶电泳技术(DGGE)及克隆测序等方法,解析微生物菌群特性.保持反应器低溶解氧环境(0.1~0.6 mg/L),使氨氧化菌(AOB)竞争力强于亚硝酸盐氧化菌(NOB),在连续流运行80 d内,平均亚硝化率几乎为100%,出水NO2--N与NH4+-N质量比稳定在1.11.SEM结果显示,亚硝化污泥中球形细菌为优势菌群.FISH结果显示,AOB与NOB的相对比例分别为37.3%与4.4%.PCR-DGGE结果表明,反应器内存在6类优势微生物菌群,其中Nitrosomonas sp.为功能微生物AOB.由多种微生物组成的功能菌群维持反应器亚硝化稳定运行.  相似文献   

2.
氨氮对内循环生物流化床亚硝化过程影响   总被引:2,自引:0,他引:2  
为实现内循环生物流化床(ITFB)短程脱氮处理高氨氮废水,在小试ITFB反应器内考察了氨氮浓度对生物膜亚硝化特性的影响.通过5个月的连续试验,研究了ITFB反应器历经启动培养、短暂亚硝化、硝化系统破坏、硝化系统恢复、完全硝化五个过程中,氨氮、硝酸盐氮和亚硝酸盐氮的转化规律及游离氨毒性作用对短程硝化过程的影响.试验结果表明:反应器启动初期出现了短暂亚硝化,平均亚硝化率为79%;在进水氨氮浓度增加到300 mg/L时,系统再次实现了亚硝化,平均亚硝化率达81%,但由于游离氨浓度的影响使得系统硝化能力受到严重影响,系统氨氮去除率降低至22%;系统恢复后,亚硝化现象不明显.反应器内游离氨浓度随进水氨氮浓度升高而增加至8 mg/L时,系统内硝化细菌和亚硝化细菌活性均受到抑制.通过提高进水氨氮浓度来实现系统短程脱氮过程稳定运行的可逆性较差.  相似文献   

3.
半短程硝化-厌氧氨氧化处理污泥消化液的脱氮研究   总被引:6,自引:0,他引:6  
采用实验室规模的半短程硝化-厌氧氨氧化联合工艺,研究了对高氨氮、低ρ(C)/ρ(N)污泥消化液的处理能力.结果表明,在A/O反应器中,短程硝化在温度9~20℃、平均ρDO=5.4 mg/L、SRT值为30 d左右时,进水氨氮负荷0.64 kg/(m3.d)的条件下,经过29 d得以实现,通过控制游离氨ρFA>4 mg/L时,此后,从30—96 d,出水亚硝氮累积率维持在70%左右;短程硝化实现之后,进而实现了半短程硝化,出水氨氮与亚硝氮浓度比维持在1∶1.32左右;采用UASB反应器,接种由好氧颗粒污泥、厌氧颗粒污泥、氧化沟活性污泥及短程硝化活性污泥组成的混合污泥,在避光、厌氧、(30±0.2)℃、pH=7.3~7.9条件下,以污泥消化液经短程硝化处理后的出水为进水,初期进水氨氮、亚硝氮容积负荷分别为0.07、0.10kg/(m3.d),经过24d运行,氨氮和亚硝氮开始出现同步去除现象,195 d时总氮去除负荷达1.03 kg/(m3.d);待半短程硝化运行稳定和厌氧氨氧化反应成功启动后,将二者联立并运行了105 d,最终总氮去除率达到70%.  相似文献   

4.
为研究污水处理厂厌氧氨氧化(Anammox)工艺可行性,在实际生活污水处理厂中进行厌氧氨氧化工艺的小试实验.向污水厂A/O除磷工艺出水中投加亚硝酸盐作为基质,启动厌氧氨氧化滤柱.反应器启动成功后,进水改为A/O除磷和亚硝化工艺处理后的生活污水,观察厌氧氨氧化工艺实际工程应用的效果.结果表明,第106~144天,进水温度为15~20℃,最大出水氨氮和总氮质量浓度为4.1和13.4 mg/L,出水氮素满足国家一级A排放标准;第168~204天,反应器运行进入冬季,进水温度为12~15℃,采用延长水力停留时间的方法实现污水处理达标;第222~240天时,水温降低到10~12℃,在进水投加125 mg/L碳酸氢钠,总氮去除负荷提高了40%,最大出水氨氮和总氮质量浓度为1.4和13.6 mg/L,冬季出水氮素达标.在整个过程中滤柱生物膜厚度持续增加,最终达113μm,单位MLSS污泥厌氧氨氧化负荷大于5 kg/(kg·d),厌氧氨氧化工艺在市政污水处理厂高效稳定运行.  相似文献   

5.
采用"连续流短程硝化-厌氧氨氧化组合工艺"处理低碳氮比高氨氮浓度的晚期垃圾渗滤液.主要考察了在不同外回流比(100%~600%)的条件下,A/O反应器中氨氮转化率以及亚硝酸盐积累率的变化,游离氨(free ammonia,FA)与游离亚硝酸(free nitrite acid,FNA)的平均质量浓度变化;UASB反应器的厌氧氨氧化活性及其在相同高度(10 cm)处的粒径变化情况.试验结果表明,当回流比维持在300%时,A/O反应器中的亚硝酸盐氧化细菌(nitrite oxidizing bacteria,NOB)被FA和FNA联合抑制,进而达到了较好的短程硝化效果,A/O反应器中氨氮转化率、亚硝酸盐积累率分别达到93.5%、95.6%以上,UASB厌氧氨氧化反应器污泥持留性与活性均达到较高的水平,总氮去除负荷达到1.04 kg/(m~3·d)以上.定量PCR结果表明,厌氧氨氧化菌占全菌的比例达到了试验期间的最大值3.78%.  相似文献   

6.
目的研究利用渗滤液作为氨氧化菌富集培养基的可行性,筛选出的优势菌在不同条件下的脱氮效果,为渗滤液生物处理提供参考.方法通过对渗滤液富集后污泥进行氨氧化菌初筛和复筛结果选出的优势菌在静态试验下研究pH、进水底物浓度、溶解氧和盐度的影响和投加优势菌后氨氮氧化速率.结果 pH、溶解氧、底物质量浓度和盐度对优势菌的脱氮性能有一定的影响,优势菌的最佳pH为7.5~8,溶解氧质量浓度3 mg/L,进水底物质量浓度与所需溶解氧成正相关关系;优势菌表现出不同盐度耐受性,X1表现出耐盐特性,而X4表现出嗜盐特性.结论渗滤液高氨氮的特性使其有作为氨氧化菌富集培养基的条件,渗滤液富集筛选出的优势菌投加反应器后可有效提高反应器的氨氮去除率.  相似文献   

7.
A/O工艺实现城市污水半亚硝化与生物除磷   总被引:1,自引:0,他引:1  
城市污水半亚硝化是实现其厌氧氨氧化的基础和关键步骤,但相关研究甚少,为此,利用A/O反应器处理实际城市污水,研究实现半亚硝化的可行性及其对生物除磷的影响.结果表明:A/O反应器可实现稳定的亚硝酸盐积累,积累率约为85%;通过调整水力停留时间可控制A/O反应器出水NO2--N/NH4+-N在1.0左右,满足厌氧氨氧化对进水水质的要求;温度和溶解氧质量浓度的波动会导致亚硝酸盐积累的破坏.实现半亚硝化的稳定后,A/O反应器除磷稳定性变差,可能与出水游离亚硝酸质量浓度(FNA)增加有关.  相似文献   

8.
为提高反应器的氮素去除率,在市政污水处理厂进行同步厌氧氨氧化反硝化(SAD)工艺小试.以A/O除磷和亚硝化工艺处理后的生活污水为基质,启动厌氧氨氧化滤柱.反应器启动成功后,基质中投加有机碳源促进反硝化菌生长,启动SAD工艺,研究碳源质量浓度对SAD工艺的影响.由于葡萄糖对厌氧氨氧化菌抑制作用较小,成本较低,作为SAD工艺的有机碳源.结果表明:常温条件下,进水分别投加10,20和30 mg/L Glu,SAD工艺耦合效果良好,平均出水总氮质量浓度为9. 16,8. 10和6. 41 mg/L.相较于厌氧氨氧化工艺,SAD工艺出水总氮质量浓度降低了16%~42%,常温条件下取得了良好的运行效果.冬季水温为10~12℃,基质中投加30 mg/L Glu,SAD工艺稳定性受到破坏并向反硝化工艺转变,出水氨氮质量浓度由0. 5 mg/L增长至6. 2 mg/L.水温对SAD工艺有较大影响,低温条件下SAD工艺中厌氧氨氧化菌与反硝化菌的竞争中占据劣势,工艺稳定性受到破坏.将基质Glu质量浓度降低到20 mg/L,出水总氮质量浓度为6. 5~8. 5 mg/L,冬季SAD工艺出水氨氮和总氮质量浓度满足北京市地方标准的A类排放标准.  相似文献   

9.
碱度对常低温处理生活污水亚硝化的影响   总被引:1,自引:1,他引:0  
为探究碱度对亚硝化过程的影响及通过碱度控制亚硝化出水比例的可行性,在序批式反应器(SBR)内快速启动亚硝化后考察不同进水碱度和氨氮比下的氨氮转化率、氨氮氧化速率及微生物活性.结果表明,硝化污泥经高氨氮预驯化可以实现亚硝化的快速启动,亚氮积累率维持在96%以上.碱度不足时,氨氮转化率与进水碱度和氨氮比成线性关系.周期试验表明,碱度可以指示亚氮质量浓度,碱度小于50 mg/L将导致氨氮氧化停止,比无机碳源质量摩尔浓度小于3.0 mmol·g-1将导致微生物数量及活性降低.实际运行中,可以通过碱度有效控制出水亚硝化比例.  相似文献   

10.
亚硝酸型硝化在生物陶粒反应器中的实现   总被引:2,自引:0,他引:2  
为确定低氨氮污水处理过程中的亚硝酸型硝化的特性,采用生物陶粒反应器对其亚硝化效果和稳定性进行研究.试验结果表明,在水温20~25℃,水力负荷0.6 m3/(m2.h),气水比(3~5)∶1,进水COD负荷106~316 mg/L,氨氮负荷42.78~73.62 mg/L的条件下,反应器对氨氮的平均去除率可达到81.32%,且亚硝酸氮积累率基本稳定地保持在91%~99%.结合反应器中氮元素沿程变化分析及反应器内生物膜中微生物的计数结果表明,通过控制低溶解氧,实现了在常温条件下稳定的亚硝酸盐积累.  相似文献   

11.
高浓度氨氮废水自养半短程硝化试验   总被引:1,自引:0,他引:1  
在SBR反应器中采用消化污泥驯化启动自养半短程硝化系统。在温度35±1℃,溶解氧浓度(DO)1.0~1.5mg/L的条件下,可实现反应器的短程硝化。试验结果表明:反应器进水NH3-N浓度为510mg/L、HRT=12h、DO=0.8~1.2mg/L、pH=7.5~8.3时,SBR反应器出水NO2^--N和NH3-N的平均浓度分别为253.7和246.9mg/L,P(NO2^--N)/p(NH3-N)为1.02,满足ANAMMOX反应器的进水要求。  相似文献   

12.
在常温下采用移动床生物膜反应器处理低C/N比废水.结果显示:在填料填充比为40%、进水氨氮质量浓度为25 mg/L条件下,出水氨氮质量浓度基本稳定在4 mg/L左右,氨氮去除率在80%以上,硝化效果突出;进水C/N不足1时,TN及COD去除率分别能达到55%、60%以上,说明移动床生物膜反应器用于处理极低C/N废水具有良好效果.  相似文献   

13.
采用"两级上流式厌氧污泥床(UASB)-缺氧/好氧(A/O)-序批式反应器(SBR)工艺"对城市生活晚期垃圾渗滤液进行了深度处理.运行模式如下:首先在一级UASB(UASB1)中反硝化,UASBI出水中的亚硝态氮和硝态氮利用残余COD在二级UASB(UASB2)中被进一步去除,在A/O反应器中利用残余COD进行反硝化以及将NH4+-N硝化,在SBR中去除硝化产生的亚硝态氮、硝态氮.试验中首先采用原渗滤液进入处理系统(20d),然后采用原渗滤液与生活污水1∶1混合进入系统实现和维持稳定的短程硝化(60d),最后采用原渗滤液与A/O反应器出水1:1混合进入系统实现和维持稳定的短程硝化(60d).140d的试验结果表明:原渗滤液的总氮浓度为2 300 mg·L-1,氨氮浓度在2 000mg·L-1左右时,通过将原渗滤液与生活污水或A/O反应器出水1:1混合,可以在A/O反应器中实现稳定的短程硝化,其中亚硝态氮积累率为70%~88%.后续的SBR工艺,可彻底去除产生的亚硝态氮和硝态氮.最终出水的氨氮浓度不到2 mg·L-1,总氮浓度为18~20mg·L-1,系统氨氮和总氮去除率分别为99.7%和98%.  相似文献   

14.
DO对SBR短程硝化系统的短期和长期影响   总被引:2,自引:0,他引:2  
采用实际的生活污水,在SBR反应器内分别考察了溶解氧(DO)对短程硝化效果及污泥种群结构的短期和长期影响.结果表明,通过采用实时控制曝气时间,高ρDO(ρ(DO)=(3±0.5)mg/L)与低ρDO(ρ(DO)=(0.5±0.1)mg/L)条件下SBR系统的亚硝酸盐积累率均能达到90%以上,而低ρDO相对于高ρDO更利于提高系统的同步硝化反硝化(SND)效果,两者的平均同步硝化反硝化率(SND率)分别为45.5%和9.5%,低ρDO下最高SND率达86%.FISH的检测结果表明,实时控制模式下反应器内亚硝酸氧化菌(NOB)逐渐被淘洗,而氨氧化细菌(AOB)变为优势硝化菌群.在高ρDO运行末期,稳定的短程污泥中AOB和NOB的相对数量分别为8%~10%和不足0.5%;在低ρDO运行末期,AOB数量出现了微弱上升,增至10%~12%,而NOB进一步被淘汰,基本检测不出.可见,采用好氧曝气时间实时控制,能对短程硝化系统内污泥种群起到优化作用,且在高、低ρDO下均能实现稳定的短程硝化效果,而低ρDO更有利于系统内亚硝酸氧化菌(NOB)的淘洗、短程硝化率的提高以及系统SND效果的加强.  相似文献   

15.
CAST工艺处理低C/N废水中DO对NO2-积累的影响   总被引:7,自引:0,他引:7  
研究了有效容积为72 L的循环式活性污泥法反应器在不同溶解氧浓度下,处理低碳氮比生活污水时,去除氨氮过程中亚硝酸盐积累的情况.选取5个DO浓度水平进行试验,结果表明,在低DO浓度下有效去除氨氮的同时,实现了长期稳定的亚硝酸盐积累,并且无污泥膨胀发生,当DO在0.5 mg/L时,系统内亚硝化率(NO2-/NOx-)可达80%以上,氨氮去除率>90%,SVI在109 mL/g左右;当DO<0.5 mg/L时,氨氮去除率下降;当DO>1 mg/L时,硝化反应较彻底,但硝化过程向全程硝化转化.  相似文献   

16.
利用序批式活性污泥反应器(sequencing batch reactor,SBR)研究了NaCl盐度、水力停留时间(hydraulic retention time,HRT)和进水负荷对短程硝化反硝化的影响.结果表明,在pH、温度和溶解氧(dissolved oxygen,DO)质量浓度分别为7.5~8.5、30~35℃和0.5~1 mg/L的条件下,当NaCl盐度、进水化学需氧量(chemical oxygen demand,COD)和氨氮质量浓度分别为5.8~25.0 g/L、450~550 mg/L和35~45 mg/L时,NO2--N累积率大于50%.在NaCl盐度14.5 g/L的条件下,当HRT为6.21 h,进水中每天1 kg悬浮物中所含的CDD和氨氮量分别为5.03×10-2和2.24×10-3kg时,亚硝酸盐累积率高于99%.高盐环境下控制HRT、有机负荷与氨氮负荷可实现短程硝化反硝化,实现短程硝化的耐盐极限为25 g/L.  相似文献   

17.
为了进一步探讨同步硝化反硝化的反应机理,采用SBR工艺,考察溶解氧和污泥粒径分布对城市污水同步硝化反硝化的影响。结果表明:低溶解氧(平均DO-0.5~0.8mg/L)条件下,氮平衡计算证实SBR工艺发生了明显的SND现象,总氮中大约23.11%的氮是通过SND现象去除的。当DO浓度为0.5mg/L时,硝态氮生成量与氨氮的减少量之比为0.454,硝化速率与反硝化速率基本相当。当DO浓度为4.296mg/L时,硝化反应产生的氨氮的减少量与硝态氮的生成量相等,此时基本不发生SND现象。当SND发生时,污泥菌胶团颗粒的平均颗粒粒径仅为5.02μm~6μm,说明SND不是单纯的“微环境作用”的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号