首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
为充分开发利用白云鄂博西矿闪石型低品位铁矿,在 矿石性质研究的基础上,系统考察了磁辊筒转速、抛尾粒度、 抛尾段数、磨矿细度等因素对干式抛尾、粗磨 弱磁选和细 磨 弱 磁 选 工 艺 的 影 响.结 果 表 明:该 矿 石 TFe含 量 为 25.78%,铁元素主要赋存于磁铁矿中;通过干式抛尾、粗磨 弱磁选、细磨 弱磁选工艺可获得 TFe品位66.56%、回收率 48.54%、MFe回收率74.81%的铁精矿.  相似文献   

2.
白云鄂博西矿区低品位铁矿石存在入选品位低、选矿利用成本高等问题,为合理利用该铁矿资源,在原矿矿石性质研究的基础上进行了选矿试验研究。结果表明,原矿采用干式磁选预先抛尾—高压辊磨—湿式磁选抛尾—湿式弱磁选工艺处理该矿石,可获得TFe品位66.09%、回收率63.25%、磁性铁回收率94.82%的合格铁精矿。试验结果为该低品位铁矿的高效开发利用提供参考依据。   相似文献   

3.
白云鄂博西矿铁矿石属于低品位磁铁矿石,矿石中铁矿物主要以磁铁矿为主,并与脉石矿物共生关系密切、嵌布粒度较细。针对此矿物的特性,对该矿进行了破碎—磨矿弱磁选、破碎产品大块预抛尾—阶段磨矿弱磁选试验。结果表明:按第二种流程经过2次大块干式抛尾和1次粗磨湿式抛尾,抛出的尾矿产率为38.05%和43.62%,所得粗精矿在磨矿细度为-0.074 mm占90.2%、磁场强度为135.35 k A/m的条件下进行湿式弱磁选,可得到铁品位为66.27%、回收率为44.68%的铁精矿。2种流程的精矿指标虽然差不多,但第2种流程可以抛掉大量的尾矿,明显减少了磨矿处理量,可见大块预抛尾—阶段磨矿弱磁选流程有明显的优势。  相似文献   

4.
针对白云鄂博低品位铁矿石资源利用率低、选矿成本高等问题,在系统研究其矿石性质的基础上,采用BX型强磁选机进行磁选工艺试验研究。结果表明,原矿石TFe品位16.52%,通过干磁抛尾—两段磨矿—三段选别的工艺流程,可获得产率16.54%、TFe品位65.31%、TFe回收率65.39%、S、P含量分别为0.36%和0.07%的铁精矿。研究结果可为该低品位铁矿石的高效利用提供技术支持。  相似文献   

5.
通过对白云鄂博西矿低品位磁铁矿的矿石性质、主要矿物组成、结构构造及嵌布粒度特征的分析,进行了粗磨预选抛尾、阶段磁选工艺流程试验及采用白云西矿巴润矿业公司下属民营选厂工艺流程的全流程考查试验,全流试验结果表明:采用预选抛尾的方法,可有效降低后续作业能耗,高效回收低品位磁铁矿,经济效益显著。  相似文献   

6.
某低品位钛铁矿TFe含量为10.20%、TiO2品位为4.55%,属于低铁低钛等级矿石。矿石成分简单,主要工业矿物为钛铁矿和磁铁矿,主要脉石矿物为角闪石、长石。针对该矿石,首先进行了重磁拉抛尾,获得了TFe含量为12.31%,TiO2品位为5.81%的抛尾粗精矿;抛尾粗精矿经磨矿—选铁处理后,采用"螺旋溜槽+干式磁选"工艺,获得了TiO2品位为46.17%的钛精矿产品,回收率为46.72%。实现了矿石中铁、钛矿物的高效回收。  相似文献   

7.
攀枝花朱家包包低品位钒钛磁铁矿选矿研究   总被引:1,自引:1,他引:0       下载免费PDF全文
对含TFe为13.54%,Ti O2为7.31%的攀枝花低品位钒钛磁铁矿,进行了粗磨湿式中磁抛废、细磨弱磁选铁和选铁尾矿强磁-浮选选钛的选矿工艺试验研究。该工艺最终获得了含TFe为55.18%,回收率为39.98%铁精矿和含Ti O2为46.13%,回收率为43.70%钛精矿,实现了对原矿中铁、钛的较佳回收。  相似文献   

8.
针对白云鄂博铁精矿杂质含量高的问题,进行分类选矿。以云母型低品位铁-稀土矿石为对象,原矿TFe品位17.48%,主要以磁铁矿和赤铁矿形式存在,且细粒级中分布率较高。通过阶段磨矿-弱磁选回收磁性铁,弱磁尾矿强磁-磨矿-强磁-反浮选回收弱磁性氧化铁工艺,在最佳条件下获得TFe品位为65.49%,产率为20.85%,回收率为66.77%的铁精矿,对该矿石的开发利用具有借鉴意义。  相似文献   

9.
某深部低品位钒钛磁铁矿铁品位21.98%,Ti O2品位为5.10%,铁主要以钛磁铁矿的形式存在,占总铁的65.92%,脉石矿物主要以橄榄石、普通辉石、中-拉长石、角闪石为主。为合理开发利用该钛、铁资源,提出了阶段磨矿—弱磁选、干式粗粒抛尾—磨矿—磁选和湿式抛尾—磨矿—弱磁选3种工艺方案进行选矿试验。结果表明,湿式抛尾—磨矿—弱磁选选铁工艺流程最终可获得产率23.87%、TFe品位56.43%、回收率62.81%的铁精矿,含Ti O27.85%,指标良好。不但提高了后续磨选作业的入选品位,而且大大降低了磨矿成本,经济适用性较好,为后续选钛提供了条件。  相似文献   

10.
白云鄂博西矿低品位磁铁矿石中铁主要以磁铁矿和假象赤铁矿的形式存在。采用预选抛尾—弱磁选试验,在粗选细度为-0.074 mm占39%、磁场强度为143.31 kA/m,精选磨矿细度为-0.074 mm占95%、磁场强度为143.31 kA/m的条件下,获得了铁品位为64.50%、回收率为52.57%的精矿产品。  相似文献   

11.
付强  金建文  李磊 《矿冶》2017,26(3):94-98
白云鄂博尾矿库是选铁和稀土后堆存的尾矿,尾矿中含铁16.71%。为查清尾矿中铁的赋存状态,采用光学显微镜、化学物相并结合MLA(自动矿物分析仪)对其展开了详细研究。结果表明,尾矿中的铁矿物主要为赤铁矿,另有少量磁铁矿和微量褐铁矿,铁在这三种矿物中的占有率达到66.83%;赤铁矿与磁铁矿的粒度主要分布于细粒级别中,其单体解离度分别为65.53%和49.34%,其连生体主要与脉石连生,且以富连生体居多。基于上述工艺矿物学特征,建议采用强磁选预先抛尾,粗精矿再磨的原则流程。  相似文献   

12.
白云鄂博氧化矿石深度还原物料分选试验研究   总被引:2,自引:0,他引:2  
白云鄂博氧化矿石深度还原物料的矿物组成复杂、金属铁粒度较粗、残碳含量高,先采用磁重联合工艺流程预先脱碳,再经阶段磨矿-粗细分选流程选铁,可获得全铁品位为92.02%,金属化率为94.18%,铁回收率为93.27%的铁粉,该铁粉可作为炼钢的原料;尾矿中稀土品位15.10%,回收率97.18%,可作为分选稀土的原料。  相似文献   

13.
我国长石资源丰富,但富矿资源少,可被直接开采利用的优质钾长石资源并不多,绝大部分需通过富集才能达到工业应用的标准。内蒙古白云鄂博矿床是世界闻名的 Fe-Nb-REO超大型矿床,钾板岩属于白云鄂博矿体上部围岩。在包头钢铁(集团)公司对该铁矿40余年的开采中,已剥离的富钾板岩作为废石在矿区大量堆存,总量超过3.0亿t,每年新增剥离富钾板岩达200万t,白云鄂博矿区钾板岩资源丰富,为提高白云鄂博矿物的综合利用,实现钾长石资源的可持续发展提出从白云鄂博矿钾板岩中回收钾长石。长石矿物常与其他杂质矿物共生,特别是其中的铁等少量杂质元素,影响钾长石精矿的品质和应用。针对内蒙古白云鄂博矿钾板岩,试验的主要目的是确定有效去除高铁钾板岩中铁矿物和云母等硅酸盐类含铁杂质的工艺流程。对白云鄂博高铁富钾板岩进行工艺矿物学分析,确定了“破碎-磨矿-永磁磁选-超导磁选”试验工艺流程,以K2O品位12.66%,Na2O品位为0.6%,TFe品位为5.55%的钾板岩为原矿,在磨矿粒度-0.074mm为92%的条件下,经永磁磁选,超导磁选试验最终得到K2O品位为15.53%,回收率为54.21%,TFe品位为0.55%的钾长石精矿,结果表明利用永磁+超导磁选工艺可以实现从钾板岩中高效回收钾长石,工艺简单可行,为从白云鄂博矿钾板岩中回收钾长石探索新的途径。  相似文献   

14.
河北某普通磁铁矿TFe品位为65.25%,矿石性质结构简单,具有制备超纯铁精矿的潜力。研究采用多元素及X射线衍射图、物相分析等方法对原矿进行了工艺矿物学研究,并在此基础上对其进行了提纯试验。结果表明,原矿经过弱磁选粗选后,在磨矿细度-0.038 mm占85%的条件下经弱磁选再选、磁选柱精选得到TFe品位为71.31%的磁选柱精矿以及TFe品位68.12%、产率为3.32%的磁选柱铁尾矿。通过进一步考察药剂制度和工艺流程对铁矿精矿品位、回收率等选别指标的影响,确定了合适的药剂制度。而后磁选柱精矿经1粗3精反浮选降硅工艺试验流程,最终可获得含TFe品位71.95%、综合回收率为80.50%的超纯铁精矿,浮选尾矿TFe品位68.17%符合普通铁精矿标准。通过对选别产品进行试样化学成分分析及残余药剂测定,进一步证明该工艺流程可以实现超纯铁精矿的制备。该工艺在抛尾率为10.79%条件下,将原矿样的73.04%转化为超纯铁精矿,对这一地区超纯铁精矿的制备具有重要的指导意义,也为国内其他地区磁铁矿制备超纯铁精矿的研究提供了一定的参考价值。  相似文献   

15.
林玉明  张敏 《矿冶工程》2011,31(4):37-40
为进一步充分合理地利用矿山资源, 特别是有效利用低品位表外矿(品位约15%~18%), 提高TFe、TiO2回收率, 延长矿山开采年限, 同时降低开采、运输以及选别成本, 利用表外低品位矿与高品位矿合理配矿, 通过预选粗粒抛尾工艺, 获得了较好的技术指标。通过该工艺的实施, 可以将废弃低品位表外矿变废为宝, 提高了资源综合利用率, 符合国家产业政策; 同时也降低了采剥成本及运输成本。  相似文献   

16.
酒钢镜铁山V矿体铁矿石采出TFe品位23%左右,多年来受选矿工艺技术水平及经济条件制约,一直未得到合理利用。现场采用单一强磁预选工艺,入选矿石TFe品位得到较为明显的提高,但尾矿TFe品位偏高,铁损失较大。为进一步提高预选效果,对该矿进行智能预选与强磁预选联合抛废试验研究。结果表明:①对于TFe品位为23.92%、粒度范围为15~45 mm粒级样,适宜的抛废率为16.31%,此时TFe品位为26.53%、回收率92.83%。抛废率为13.20%和20.39%的稳定试验结果与条件试验结果基本一致,表明智能预选试验数据可靠。②A1粒级样(30~45 mm)粗选适宜的筒体表面线速度为0.70 m/s,此时精矿TFe品位为29.03%、回收率70.91%;A2粒级样(15~30 mm)粗选适宜的筒体表面线速度为0.85 m/s,此时精矿TFe品位为30.03%、回收率78.09%。③粒度为30~45 mm的智能预选精矿通过强磁干式预选,可抛除作业产率为15.04%、TFe作业回收率为8.29%的尾矿,精矿TFe品位提升了2.04个百分点;粒度为15~30 mm的智能预选精矿通过强磁干式预选,可抛除作业产率为10.97%、TFe作业回收率为5.79%的尾矿,精矿TFe品位提升了1.54个百分点。粒度为30~45 mm的智能预选精矿的强磁干式预选效果更好。④采用智能预选—强磁干式预选(1粗1扫)工艺进行联合抛废处理15~45 mm粒级矿样,可抛除总产率为24.12%、TFe回收率为11.95%的尾矿,精矿TFe品位提升了3.85个百分点,预选效果较好。  相似文献   

17.
攀西某低品位钒钛磁铁矿选铁试验研究   总被引:2,自引:0,他引:2  
针对攀西某含TFe24.44%、TiO26.76%的低品位矿石开展了多种选铁工艺流程的比较试验研究,结果表明:若不考虑钛铁矿的回收利用,同时考虑生产过程易行,采用3~0mm的粗粒抛尾工艺是选铁的最佳工艺流程;若要综合利用钛铁矿,则以原矿一段球磨磨至-200目含量为65%左右的两段球磨磁选选铁工艺为最佳选铁工艺流程。  相似文献   

18.
白云鄂博铁矿是世界上罕见的大型多金属矿床,多年来只作为铁矿和稀土矿进行开发,选别流程中稀土回收率较低,造成大量稀土资源和矿体中蕴含的萤石资源随着选铁尾矿排入到尾矿库中。为综合回收稀土和萤石资源,以白云鄂博某选厂选铁尾矿为研究对象,开展综合回收稀土和萤石的研究,采用的工艺流程为稀土浮选—萤石预选—萤石精选—强磁选。稀土浮选以水玻璃为抑制剂、SR为捕收剂、2#油为起泡剂,萤石预选以水玻璃为抑制剂、SF为捕收剂,萤石精选以酸性水玻璃为调整剂、SY为抑制剂、油酸钠为捕收剂,最终获得了REO品位50.54%、REO回收率92.32%的稀土精矿和CaF2品位95.51%、回收率50.98%的萤石精矿。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号