首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 421 毫秒
1.
目的研究硼掺杂金刚石(BDD)电极电化学氧化降解活性橙X-GN偶氮染料废水。方法采用热丝气相沉积法(HFCVD)制备铌基BDD电极,采用SEM观察BDD薄膜的表面形貌,用Raman检测BDD薄膜的成分,用电化学工作站测试BDD电极的电化学性能。选择活性橙X-GN染料废水作为降解对象,分别研究电流密度(20、50、100、150 m A/cm~2)、电解质浓度(0.025、0.05、0.1 mol/L)和溶液初始pH(3.78、6.74、10.92)等不同工艺参数对降解效率的影响,并采用紫外可见光分光光度计进行测试表征,使用能耗和总有机碳量表征降解效果。结果 BDD电极具有很好的电催化性能,其电势窗口为3.33 V,析氧电位达到2.45 V,远高于大多数有机物的氧化电位,电极表面反应受扩散步骤控制。结合活性橙X-GN染料溶液降解效果,得出100 mg/L活性橙X-GN溶液的最佳降解工艺参数为:电流密度100 m A/cm~2、电解质浓度0.05mol/L、溶液初始pH值3.78。采用最佳工艺参数处理5 h后,色度移除率达到99%,能耗为65.4 k W·h/m~3,TOC去除率达到56.95%。结论 BDD电极可以有效地降解活性橙X-GN染料废水。  相似文献   

2.
目的 探究Si/BDD电极在酸性、碱性2种电解条件下的性能变化特征,阐明BDD电极在酸、碱溶液中电化学氧化性能的变化与失效机理。方法 通过HFCVD技术制备Si/BDD电极,分别在1 mol/L H2SO4、1 mol/L NaOH溶液中进行加速寿命实验,以活性蓝19(RB-19)模拟染料废水,进行电化学氧化降解实验。使用扫描电子显微镜、拉曼光谱、接触角测试仪、紫外分光光度计及电化学工作站对电极的表面形貌、成分及电化学性能进行表征。结果 在1 mol/L NaOH溶液中,当电解时间为195 h时,电极表面部分区域发生了明显的脱落现象;在1 mol/L H2SO4溶液中,当电解时间达到600 h时,电极表面仍未出现明显的脱落现象,电极表面形貌由清晰转为模糊,晶粒尺寸细化,且在晶界处存在明显的腐蚀现象;在酸溶液中,BDD电极对RB-19的降解效果随着电解时间的延长而提高,而在碱溶液中,其降解效果与电解10 h的降解效果基本一致。结论 与酸溶液相比,Si/BDD电极更易在碱溶液中发生腐蚀。  相似文献   

3.
目的 探索BDD厚膜电极处理高浓度有机废水方案的可行性.方法 利用直流电弧等离子体喷射法制备BDD厚膜电极,对其结构和电化学性能进行表征,并利用BDD厚膜作为电解阳极对高浓度模拟废水(葡萄糖溶液)和实际工业过程产生的橡胶助剂废水进行电化学氧化处理.结果 对电极样品的表征表明,其在0.5 mol/L H2SO4溶液中的电化学窗口和析氧电位分别为3.02 V和2.07 V.对模拟废水(葡萄糖溶液)和橡胶助剂工业废水的电化学降解实验表明,BDD厚膜电极对废水中的有机物有很好的去除效果.对于初始COD(化学需氧量)值为18940 mg/L的高浓度葡萄糖溶液,在电解8 h后,COD值的去除率为91.02%.对于初始COD值为18380 mg/L的高浓度橡胶助剂废水,在电解10 h后,COD值的去除率为97.42%.结论 直流电弧等离子体喷射法制备的重掺杂BDD厚膜电极有着较宽的电化学窗口和高的析氧电位,能有效地降低有机溶液的COD值.BDD厚膜电极的最佳工作条件为:在高有机物浓度环境下,为提高降解效率,应选择较高的电流密度.对于高COD值葡萄糖溶液和橡胶助剂废水,最优电流密度为200 mA.在低有机物浓度环境下,为降低能耗,应该选择较低的电流密度.对于低COD值葡萄糖溶液,最优电流密度为50 mA.  相似文献   

4.
目的 探究电极微观结构与降解温度对掺硼金刚石(BDD)薄膜电极电化学降解活性橙X-GN染料废水的影响。方法 通过HFCVD技术,在铌基体上分别沉积6、12、18 h的BDD薄膜,得到6-BDD/Nb、12-BDD/Nb、18-BDD/Nb电极,将三种电极作为阳极,调控降解温度,分别对活性橙X-GN染料废水进行模拟电化学氧化降解实验。采用扫描电子显微镜、拉曼光谱仪、电化学工作站分析电极性能,用紫外可见光分光光度计测量废水的吸光度。结果 随着沉积时间的延长,BDD薄膜电极表面微观结构改变,晶粒尺寸、表面粗糙度、掺硼量增加,sp3/sp2相比例升高。12-BDD/Nb、18-BDD/Nb电极的有效电极催化活性面积分别是6-BDD/Nb电极的2.6和2.8倍;常温下的降解效率分别提高1.3和1.5倍;能耗分别降低了10.8和22.6 kWh/m3。温度升高,电极的降解速率加快,能耗降低且逐渐趋于一致,最终都低至5.5 kWh/m3。结论 沉积时间增加,可以改变BDD电极微观结构,提高其电化学和氧化降解性能,降解温度升高有利于提升电极的降解速率,并降低能耗。然而升高温度可以有效提升低效电极的降解效率,却对高效电极作用甚微。  相似文献   

5.
目的 制备碳纳米管-镍/掺硼金刚石复合电极(CNTs-Ni/BDD),并用于非酶葡萄糖电化学检测。方法 采用热丝化学气相沉积(HFCVD)在硅基体上沉积BDD,然后采用物理气相沉积(PVD)技术在BDD上沉积Ni薄膜,最后在管式炉中对Ni/BDD样品进行900 ℃热催化处理,调控热处理时间分别为30、90 min,得到不同微观结构的CNTs-Ni/BDD复合电极。采用扫描电子显微镜(SEM)、Raman光谱和电化学工作站分别表征电极的表面形貌、成分和电化学性能。结果 在Ni的高温催化作用下,BDD作为基体和唯一碳源,在其表面直接生长出CNTs,实现Ni纳米颗粒和CNTs共修饰BDD。热处理时间由30 min增加到90 min,CNTs长度明显增加,对BDD的覆盖程度增加,且顶端的Ni颗粒消失。CNTs和Ni的共修饰作用极大地提升了葡萄糖的电化学检测性能,且30 min-CNTs-Ni/BDD复合电极性能更优异,其灵敏度在葡萄糖浓度0.005~0.02 mmol/L、0.02~1 mmol/L、1.0~5.5 mmol/L线性范围内分别为475、42、19 μA/((mmol/L)?cm2),检测限为0.42 μmol/L(S/N=3)。结论 热催化处理可以简单高效地实现CNTs、Ni共修饰BDD,该复合电极能够有效地提升葡萄糖电化学检测性能。  相似文献   

6.
以生产除草剂过程中废水作为研究对象,采用活性炭吸附法、Fenton氧化法、电解氧化法、光催化氧化法相结合,将废水的化学需氧量(COD)从72186mg/L降至150mg/L。并重点研究了PbO2/Ti复合电极在电催化氧化中对废水处理的最佳条件。结果表明,废水为中性、电极间距离为5mm条件下,加入少量的H2O2可以显著地提高电解氧化效率,再经光催化氧化降解后可以达到国家废水排放标准。  相似文献   

7.
苑奎  王婷  崔锋  倪晋仁 《表面技术》2015,44(5):96-101
目的研究硼掺杂对改善金刚石膜的电阻率的影响,制备掺硼金刚石膜。方法采用热丝化学气相沉积系统,以CH4,H2,(CH3O)3B混合气体为反应气,在钛片衬底上沉积制备掺硼金刚石膜电极。对不同生长阶段沉积出的电极进行扫描电镜、EDX光电子能谱、激光Raman光谱、X射线衍射、电化学性能表征及废水降解应用研究。结果制备出的掺硼金刚石膜呈现出均匀的(111)晶面,Raman光谱图中金刚石特征峰与硼原子特征峰峰型显著,具有较低的背景电流和更宽的电位窗口(3.5 V),对苯酚废水COD降解效果显著。结论有机污染物的吸附量与电极表面的粗糙度正相关,实验室制备的BDD/Ti电极表面粗糙度小,不利于析氢和析氧等副反应的发生,能降低直接电化学氧化作用,从而得到更宽的电势窗口。  相似文献   

8.
对比研究新型Ti/Al复合基体电极Ti/Al/Ti/SnO2+Sb2O4/PbO2和传统纯Ti基体电极Ti/SnO2+Sb2O4/PbO2的性能差异。通过改变Ti/Al复合基体的制备温度,探索制备新型电极的最佳工艺条件。运用SEM、EDS和XRD表征Ti/Al基体界面层与电极表面β-PbO2活性层的物相形貌。结合电化学测试技术,分析基体制备温度对电极电化学性能及寿命的影响。结果表明:Ti/Al复合基体的电阻率仅为纯Ti的1/10,该电极β-PbO2层的晶粒趋于细化且均匀,活性层比表面积增大,电化学性能均好于纯Ti基体电极。其中,在540℃获得的Ti/Al基体复合界面相为TiAl3,该复合基体电极的性能最佳。电极电阻较纯Ti基体电极降低43%,极化电位下降18%,在0.2 A/cm2的电流密度下,电位降低了320 m V。经强极化测试,该电极具有最大的交换电流密度j0与最低的析氧超电压η,工业使用寿命长达10.4年,高出传统电极50%,具有良好的应用前景。  相似文献   

9.
采用阳极电沉积技术制备了金属铝掺杂改性的Ti/PbO2电极,通过表面粗糙度测量仪,扫描电镜,X射线衍射仪、线性极化扫描和交流阻抗谱电化学测试和加速寿命试验对铝掺杂引起PbO2涂层电极的物理化学特性的影响进行分析,并对铝掺杂改性的Ti/PbO2电极对苯酚模拟废水电催化氧化降解行为进行考察。结果表明,Al3+添加可使得Ti/PbO2电极涂层结晶细化、沉积均匀致密,表面粗糙度明显降低,结瘤缺陷改善;铝掺杂改性的Ti/PbO2析氧电位升高,电荷传递及催化性能提高,但呈非单调变化,其中添加3mM Al3+制备电极的析氧电位最高可达到2.09V,导电性优异,电催化性能最佳,电化学稳定性高,其强化寿命可达到460h,比未改性电极寿命提高了100h。铝掺杂改性的Ti/PbO2电极对苯酚模拟废水具有良好的电化学氧化降解能力,180min处理后苯酚去除率最高可达到93.6%,COD去除率最大可达到73.6%。  相似文献   

10.
利用热分解方法在多孔钛上制备了Sb掺杂纳米SnO2电极。也研究了该电极降解甲基橙的电化学性能。SEM和XRD测试表明,在多孔钛基体上可获得完整的、无裂缝的涂层。无裂缝的涂层表面由粒径范围在80~230 nm的Sb掺杂SnO2纳米颗粒组成。HRTEM测试结果表明,SnO2纳米颗粒由5~6 nm细小颗粒构成。在其余条件相同的情况下,强化寿命试验表明,Sb掺杂纳米SnO2/多孔Ti电极的寿命远大于致密钛基体上的电极。Sb掺杂纳米SnO2/多孔Ti电极可将浓度为100 mg/L的甲基橙溶液降解到8 mg/L,显示出该电极具有很强的有机物污染物电催化降解能力。并指出采用简单的表面处理技术,将使多孔钛具有很高的潜力被应用到有机污水降解领域。  相似文献   

11.
Boron doped diamond(BDD)thin films have been deposited on Ti substrate with Ta interlayer by MP-CVD(microwave plasma chemical vapor deposition),and Ta interlayer was deposited by magnetron sputtering.The physical and electrochemical behaviors of the Ti/Ta/BDD electrode and its application in electrochemical oxidation of wastewater containing 2,4-dichlorophenol were studied.Raman spectroscopy and field emission scanning electron microscopy(FESEM)demonstrates that the films obtained exhibit well-defined diamond features.XRD spectroscopy shows no TiC in the BDD film with Ta interlayer.Electrochemical measurement shows the BDD electrode behaves low background current and wide working potential window up to 4 V.Further,the removal efficiency of chemical oxygen demand(COD)of the BDD electrodes were evaluated by the electrochemical oxidation of 2,4-dichlorophenol.  相似文献   

12.
采用恒电位法,以石墨箔为工作电极,通过聚苯胺(PANI)和二氧化铈(CeO2)的电化学共沉积,制备了PANI/CeO2复合膜.利用SEM,TEM和电子衍射(EDP)观测了PANI/CeO2复合膜的形貌和结构,利用Fourier变换红外光谱(FTIR)研究了PANI/CeO2复合膜的组成,利用循环伏安法研究了PANI/CeO2复合膜的电化学行为.研究了电化学沉积条件对PANI/CeO2复合膜形貌的影响.结果表明,在1.1 V(vs SCE)进行PANI与CeO2的电化学共沉积时,由于苯胺电化学聚合和CeO2电化学沉积过程中均释放一定量的H+,PANI/CeO2复合膜以"羊角"形貌存在;而0.8 V电化学沉积的复合膜则以纳米颗粒形式存在."羊角"形的PANI/CeO2复合膜上形成很多上部宽大、底部稍窄的懊形空间,有利于客体粒子进入复合膜深处与活性组分充分接触,提高性能.复合膜的FTIR谱上出现了PANI的典型振动吸收,循环伏安测试结果表明复合膜主要呈现PANI的电化学性能.  相似文献   

13.
采用恒电位法,以石墨箔为工作电极,通过聚苯胺(PANI)和二氧化铈(CeO2)的电化学共沉积,制备了PANI/CeO2复合膜.利用SEM,TEM和电子衍射(EDP)观测了PANI/CeO2复合膜的形貌和结构,利用Fourier变换红外光谱(FTIR)研究了PANI/CeO2复合膜的组成.利用循环伏安法研究了PANI/CeO2复合膜的电化学行为.研究了电化学沉积条件对PANI/CeO2复合膜形貌的影响.结果表明,在1.1 V(vs SCE)进行PANI与CeO2的电化学共沉积时,由于苯胺电化学聚合和CeO2电化学沉积过程中均释放一定量的H+,PANI/CeO2复合膜以"羊角"形貌存在;而0.8 V电化学沉积的复合膜则以纳米颗粒形式存在."羊角"形的PANI/CeO2复合膜上形成很多上部宽大、底部稍窄的楔形空间,有利于客体粒子进入复合膜深处与活性组分充分接触,提高性能.复合膜的FTIR谱上出现了PANI的典型振动吸收,循环伏安测试结果表明复合膜主要呈现PANI的电化学性能.  相似文献   

14.
采用阳极氧化法制备TiO2纳米管,通过超声辅助连续离子沉淀法对TiO2纳米管进行CdS/PbS共复合修饰改性。应用X射线衍射 (XRD)、扫描电镜 (SEM) 及其配套的能谱分析 (EDS) 对CdS/PbS/TiO2的晶型特征、表面形貌及元素分布进行表征;利用电化学分析方法研究了复合次序对CdS/PbS/TiO2的光电性能影响,考察了CdS/PbS/TiO2复合材料对304不锈钢的阴极保护性能。结果表明:成功制备了晶型特征和表面形貌良好的CdS/PbS/TiO2多元异质结;先复合9次PbS、再复合15次CdS的TiO2纳米管具有更加优良的光电性能;光照下CdS/PbS/TiO2复合材料对304不锈钢光生阴极保护性能显著优于单一PbS复合的TiO2和纯TiO2;在暗态下CdS/PbS/TiO2复合材料储能效果良好,可延长对304不锈钢的阴极保护作用。  相似文献   

15.
用溶胶凝胶旋涂工艺在304不锈钢表面制备了多壁纳米碳管MWCNT/TiO2复合薄膜,用X射线衍射技术和电子显微技术研究了复合薄膜的物相组成与显微形貌,同时采用电化学分析手段,分别在250 W紫外灯和28 W节能灯的照射下,表征了MWCNT/TiO2复合薄膜在3% NaCl溶液和海水介质中对304不锈钢的光阴极防腐蚀性能。研究结果表明,经450℃煅烧和加入管径为20~40 nm纳米碳管制备的MWCNT/TiO2复合薄膜,不论是在紫外光还是白光激发下都表现出了比纯TiO2薄膜更加优良的光电性能。同时也表明在3% NaCl溶液和海水介质中纳米碳管的引入都可有效增强TiO2薄膜对304不锈钢的光阴极防腐蚀性能。  相似文献   

16.
The layered compound Li(Ni0.5Mn0.5)1-xTixO2 powders were prepared with Ni(OH)2, MnCO3, Li2CO3 and TiO2 by one-step solid state reaction. The effect of doping Ti on the structure and electrochemical properties was studied. The XRD results indicate that the powders with 0≤x≤0.05 have good layered structure and trace of impurity appears in the samples with x≥0.1. The SEM photographs show that the particle size distributes homogeneously and the sample with x=0.15 has larger particle size than other samples. The charge-discharge tests show that Li(Ni0.5Mn0.5)0.95Ti0.05O2 synthesized at 800 °C for 36 h exhibits good electrochemical properties. It firstly delivers 173 mA·h/g and maintains 90% of the initial discharge capacity after 30 cycles. The cyclic voltammetry and differential capacity vs voltage curves show that the major oxidation and reduction peaks are around 3.95 V and 3.75 V, respectively, assigned to Ni2+/Ni4+ oxidation-reduction process. A weak peak around 4.5 V is found during the oxidation process in the first cycle, which can be regarded as the main reason of the large drop of discharge capacity in the initial cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号