首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The importance of mitochondrial creatine kinase (mi-CK) in oxidative muscle was tested by studying the functional properties of in situ mitochondria in saponin-skinned muscle fibres from sarcomeric mi-CK-deficient (mutant) mice. Biochemical analyses showed that the lack of mi-CK in mutant muscle was associated with a decrease in specific activity of MM-CK in mutant ventricle, and increase in mutant soleus (oxidative) muscle. Lactate dehydrogenase activity and isoenzyme analysis showed an increased glycolytic metabolism in mutant soleus. No change was observed in ventricular muscle. In control animals, the apparent K(m) of mitochondrial respiration for ADP in ventricle and soleus (232 +/- 36 and 381 +/- 63 microM, respectively) was significantly reduced in the presence of creatine (52 +/- 8 and 45 +/- 12 microM, respectively). There was no change in the K(m) in oxidative fibres from mutant mice (258 +/- 27 and 399 +/- 66 microM, respectively) compared with control, though surprisingly, it was also significantly decreased in the presence of creatine (144 +/- 8 and 150 +/- 27 microM, respectively) despite the absence of mi-CK. It is proposed that in mutant (and perhaps normal) oxidative tissue, cytosolic MM-CK can relocate to the outer mitochondrial membrane, where it is coupled to oxidative phosphorylation by close proximity to porin, and the adenine nucleotide translocase. Such an effect can preserve the functioning of the CK shuttle and the energetic properties of mi-CK deficient tissue.  相似文献   

2.
Rates of adenosine triphosphate (ATP) metabolism are higher in cerebral gray matter than in white matter. Like other excitable tissues, brain contains a phosphocreatine (PCr)/creatine kinase (CK)/ATP system including cytosolic (B-CK) and mitochondrial (Mi-CK) isozymes. High B-CK activity is present in white and gray matter while Mi-CK is mostly in gray matter. An in situ localizing 31P-NMR technique, one-dimensional chemical shift imaging (1D-CSI), has been used to study the PCr/CK/ATP system in these regions. In the metabolically mature 4-week-old piglet, the PCr/nucleoside triphosphate (NTP) ratio measured by the 1D-CSI technique is at least 50% higher in white than gray matter. Total creatine (Cr), ATP, and total NTP concentrations are the same in rapidly frozen rat white and gray matter, suggesting that PCr/Cr ratio is much higher in white matter. The PCr increases more in gray than white matter between 4 days and 4 weeks of age in piglet brain. The CK catalyzed reaction rate constant, measured by combining the saturation transfer experiment with the 1D-CSI, is also much higher in white than gray matter at both ages. The postnatal maturational increase in the CK rate constant is greater in gray matter. In summary, these differences in PCr concentration and CK reaction rates and isozymes characterize two physiologically different PCr/CK/ATP systems in gray and white matter.  相似文献   

3.
Mitochondrial inclusion bodies are often described in skeletal muscle of patients suffering diseases termed mitochondrial myopathies. A major component of these structures was discovered as being mitochondrial creatine kinase. Similar creatine kinase enriched inclusion bodies in the mitochondria of creatine depleted adult rat cardiomyocytes have been demonstrated. Structurally similar inclusion bodies are observed in mitochondria of ischemic and creatine depleted rat skeletal muscle. This paper describes the various methods for inducing mitochondrial inclusion bodies in rodent skeletal muscle, and compares their effects on muscle metabolism to the metabolic defects of mitochondrial myopathy muscle. We fed rats with a creatine analogue guanidino propionic acid and checked their solei for mitochondrial inclusion bodies, with the electron microscope. The activity of creatine kinase was analysed by measuring creatine stimulated oxidative phosphorylation in soleus skinned fibres using an oxygen electrode. The guanidino propionic acid-rat soleus mitochondria displayed no creatine stimulation, whereas control soleus did, even though the GPA solei had a five fold increase in creatine kinase protein per mitochondrial protein. The significance of these results in light of their relevance to human mitochondrial myopathies and the importance of altered cell energetics and metabolism in the formation of these crystalline structures are discussed.  相似文献   

4.
Fourteen new creatine analogues, all with a guanidine function and either a polar or an apolar group instead of the creatine carboxylic function, were tested as potential inhibitors for human creatine kinase by kinetic analysis of their effects on the reaction rate. Only compounds bearing an apolar aromatic moiety, which was spaced from the guanidine function by at least two bonds, proved to have a significant inhibitory activity and showed a mixed-type inhibition similar to that of creatine. Among these compounds 2,6-dichlorobenzylguanidine (Ki = 5.6 mM and 39.8 mM for muscle-type and brain-type creatine kinases, respectively) and 3-(2,6-dichlorophenyl)propylguanidine (Ki = 15 mM and 4.5 mM) were the more potent inhibitors and showed a significant isoenzyme selectivity between muscle- and brain-type creatine kinases. Our results are in agreement with recent data that suggest the location of a hydrophobic pocket near the guanidine-binding domain of the enzyme. The observed selectivity in isoenzyme inhibition may be useful to study structural differences in catalytic centers.  相似文献   

5.
The reaction of peroxynitrite (PN) with sarcomeric mitochondrial creatine kinase (Mib-CK; EC 2.7.3.2) was observed at different stages of complexity (i) with purified Mi-CK, (ii) with enzyme bound on isolated mitoplasts, and (iii) within intact respiring mitochondria. Creatine-stimulated respiration was abolished by PN concentrations likely to be physiological and far before the respiratory chain itself was affected, thus demonstrating that Mi-CK is a prime target for inactivation by PN in intact mitochondria. The inactivation by PN of Mi-CK was reversed by 22% with 2-mercaptoethanol. More remarkable protective effects were noticed with the full set of CK substrates, e.g. 30 and 50% protection with MgATP plus creatine and MgADP plus phosphocreatine, respectively, but not with each substrate alone. These data indicate an involvement of the active-site Cys-278 residue of Mi-CK in this process. Furthermore, changes in endogenous tryptophan fluorescence intensity and spectral changes after reaction of Mi-CK with PN suggest additional modifications of Trp and Tyr residues. PN-inactivated Mi-CK can no longer be efficiently converted into dimers by incubation with reagents inducing a transition state analog complex at the active site. Thus, obviously, upon reaction of octameric Mi-CK with PN, the octamer-dimer equilibrium of Mi-CK is also affected. The consequences for cellular energy homeostasis and calcium handling are discussed.  相似文献   

6.
We have blocked creatine kinase (CK) mediated phosphocreatine (PCr) <==> ATP transphosphorylation in mitochondria and cytosol of skeletal muscle by knocking out the genes for the mitochondrial (ScCKmit) and the cytosolic (M-CK) CK isoforms in mice. Animals which carry single or double mutations, if kept and tested under standard laboratory conditions, have surprisingly mild changes in muscle physiology. Strenuous ex vivo conditions were necessary to reveal that MM-CK absence in single and double mutants leads to a partial loss of tetanic force output. Single ScCKmit deficiency has no noticeable effects but in combination the mutations cause slowing of the relaxation rate. Importantly, our studies revealed that there is metabolic and cytoarchitectural adaptation to CK defects in energy metabolism. The effects involve mutation type-dependent alterations in the levels of AMP, IMP, glycogen and phosphomonoesters, changes in activity of metabolic enzymes like AMP-deaminase, alterations in mitochondrial volume and contractile protein (MHC isoform) profiles, and a hyperproliferation of the terminal cysternae of the SR (in tubular aggregates). This suggests that there is a compensatory resiliency of loss-of-function and redirection of flux distributions in the metabolic network for cellular energy in our mutants.  相似文献   

7.
The purpose of this study was to test the hypothesis that energy metabolism is impaired in residual intact myocardium of chronically infarcted rat heart, contributing to contractile dysfunction. Myocardial infarction (MI) was induced in rats by coronary artery ligation. Hearts were isolated 8 wk later and buffer-perfused isovolumically. MI hearts showed reduced left ventricular developed pressure, but oxygen consumption was unchanged. High-energy phosphate contents were measured chemically and by 31P-NMR spectroscopy. In residual intact left ventricular tissue, ATP was unchanged after MI, while creatine phosphate was reduced by 31%. Total creatine kinase (CK) activity was reduced by 17%, the fetal CK isoenzymes BB and MB increased, while the "adult" mitochondrial CK isoenzyme activity decreased by 44%. Total creatine content decreased by 35%. Phosphoryl exchange between ATP and creatine phosphate, measured by 31P-NMR magnetization transfer, fell by 50% in MI hearts. Thus, energy reserve is substantially impaired in residual intact myocardium of chronically infarcted rats. Because phosphoryl exchange was still five times higher than ATP synthesis rates calculated from oxygen consumption, phosphoryl transfer via CK may not limit baseline contractile performance 2 mo after MI. In contrast, when MI hearts were subjected to acute stress (hypoxia), mechanical recovery during reoxygenation was impaired, suggesting that reduced energy reserve contributes to increased susceptibility of MI hearts to acute metabolic stress.  相似文献   

8.
The effects of high-energy phosphate contents in muscles on glucose tolerance and glucose uptake into tissues were studied in rats and mice. Enhanced glucose tolerance associated with depleted high-energy phosphates and elevated glycogen content in muscles and liver was observed in animals fed creatine analogue beta-guanidinopropionic acid (beta-GPA). Distribution of infused 2-[1-14C]deoxy-D-glucose in tissues especially in the soleus muscle, kidney, and brain was greater in mice fed beta-GPA than controls. The glucose uptake was decreased when the contents of ATP and glycogen were normalized following creatine supplementation. Plasma insulin in animals at rest was lower and its concentration after intraperitoneal glucose infusion tended to be less in animals fed beta-GPA than controls (p > 0.05), although the pattern of insulin response to glucose loading was similar to the control. The daily voluntary activity in beta-GPA fed mice was also less than controls. These results suggest that improved glucose tolerance is not related to elevated insulin concentration and/or decreased glycogen following exercise. Such improvement may be due to an increased mitochondrial energy metabolism caused by depletion of high-energy phosphates.  相似文献   

9.
In vertebrates, the creatine kinase isoenzyme family consists of four types of isoforms: cytosolic muscle type (M-CK), cytosolic brain type (B-CK), mitochondrial ubiquitous, acidic type (Miu-CK), and mitochondrial sarcomeric, basic type (Mis-CK). Until recently, the existence of more than one subisoform of CK isoenzyme has been demonstrated only in fishes by starch gel electrophoresis. We report herein the isolation of three full-length cDNAs that correspond to three closely related creatine kinase M-CK genes from common carp (Cyprinus carpio), designated the M1-CK, M2-CK, and M3-CK genes. Using oligonucleotide probes that correspond to the same region but with the most variable sequences, different restricted genomic hybridization patterns have been obtained. These Southern blot results indicate that the three cDNAs come from different genes. Northern blot analysis using probes that correspond to the 3'-untranslated regions further show that all three subisoforms are expressed specifically in carp muscle. The deduced amino acid sequences of these three subisoforms of carp M-CK show about 85% identity to mammalian M-CK isoenzyme. Finally, the three cDNAs have been expressed in Escherichia coli with a molecular mass of approximately 43,000 Da, and these recombinant proteins exhibit creatine kinase activity. All of these data suggest that the M-CK isoenzymes have at least three subisoforms in carp.  相似文献   

10.
Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise. The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing.  相似文献   

11.
Functional properties of in situ mitochondria and of mitochondrial creatine kinase were studied in saponin-skinned fibers taken from normal and M-creatine kinase-deficient mice. In control animals, apparent Km values of mitochondrial respiration for ADP in cardiac (ventricular) and slow-twitch (soleus) muscles (137 +/- 16 microM and 209 +/- 10 microM, respectively) were manyfold higher than that in fast-twitch (gastrocnemius) muscle (7.5 +/- 0.5 microM). Creatine substantially decreased the Km values only in cardiac and slow-twitch muscles (73 +/- 11 microM and 131 +/- 21 microM, respectively). As compared to control, in situ mitochondria in transgenic ventricular and slow-twitch muscles showed two times lower Km values for ADP, and the presence of creatine only slightly decreased the Km values. In mutant fast-twitch muscle, a decrease rather than increase in mitochondrial sensitivity to ADP occurred, but creatine still had no effect. Furthermore, in these muscles, relatively low oxidative capacity was considerably elevated. It is suggested that in the mutant mice, impairment of energy transport function in ventricular and slow-twitch muscles is compensated by a facilitation of adenine nucleotide transportation between mitochondria and cellular ATPases; in fast-twitch muscle, mainly energy buffering function is depressed, and that is overcome by an increase in energy-producing potential.  相似文献   

12.
We have investigated the effect of chronic exposure of rats to an hypoxic environment (10% O2; 3 weeks), on the first step of the intracellular energy transfer process in the myocardium, i.e. the transfer at mitochondrial level of high energy bonds from ATP to creatine. In the left ventricles from rats adapted to normobaric hypoxia, we observed, using the permeabilized fiber technique, that the stimulatory effect of creatine on the mitochondrial respiration in presence of a low ADP concentration (0.1 mM) was attenuated when compared to control. Furthermore, the creatine-induced decrease of the apparent K(m) for ADP of the mitochondrial respiration, which is observed in control, was significantly reduced. Both the basal and maximal respiratory rates of the fibers were unchanged by the hypoxic exposure of the rats. A significant decrease of the total creatine kinase activity from 755 to 630 IU/g wet weight (for control and hypoxic rats, respectively) was detected and was accompanied by a 25% decrease in mitochondrial isoform activity (mitoCK) and in the mitoCK/citrate synthase ratio. In the right ventricles, identical alterations in the effect of creatine on apparent K(m) for ADP were observed while we did not detect any changes in CK activity. The decrease in mitoCK activity and the fall in the reactivity of respiration to creatine could be interpreted as a mechanism for downregulating oxygen demand during chronic hypoxia. The consequences of such alterations on energy metabolism of cardiomyocytes under conditions of reduced oxygen supply are discussed.  相似文献   

13.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To test the hypothesis that embryonic brain cells utilize a creatine phosphate energy shuttle, we examined the pattern of creatine kinase (CK) isoform expression and localization in the fetal rat brain. Moderate levels of CK activity are present at embryonic day 14 (7 U/mg protein) and decrease slightly until 3 days postpartum followed by a rapid, fourfold up-regulation to adult levels by 1 month (18 U/mg protein). In parallel with changes in enzyme activity, there is a biphasic and coordinate pattern of expression of brain-type CK (BCK) and ubiquitous mitochondrial CK (uMtCK) determined by nondenaturing electrophoresis and immunoblot analysis. The localization of CK isoforms was examined by immunocytochemistry, and, during the fetal period, BCK and uMtCK immunoreactivity was detected throughout the central and peripheral nervous system, especially in neuroepithelial regions of the cerebral vesicles and spinal cord. In large cells within the olfactory neuroepithelium and ventral spinal cord, differential compartmentation of CK isoforms was evident, with BCK localized primarily in cell nuclei, whereas uMtCK immunoreactivity was present in the cell body (but not within nuclei). In olfactory bulb neuroepithelium, both isoforms were expressed in the middle zone of the germinal layer associated with DNA synthesis. In embryonic skeletal and cardiac muscle, which also express BCK, the same compartmentation of BCK was seen, with BCK localized primarily in the cell nucleus of cardiac and skeletal myoblasts. These results demonstrate a coordinate pattern of expression and compartmentation of BCK and uMtCK isoforms in the fetal brain that, in some cells, provides the anatomic basis for a nuclear energy shuttle.  相似文献   

15.
Muscle deconditioning is a common observation in patients with congestive heart failure (CHF), chronic obstructive pulmonary disease, neuromuscular diseases or prolonged bed rest. To gain further insight into metabolic and mechanical properties of deconditioned slow-twitch (soleus) or fast-twitch (EDL) skeletal muscles, we induced experimental muscle deconditioning by hindlimb suspension (HS) in rats for 3 weeks. Cardiac muscle was also studied. Besides profound muscle atrophy, increased proportion of fast type II fibers as well as fast myosin isoenzymes, we found decreased calcium sensitivity of Triton X-100 skinned fiber bundles of soleus muscle directed towards the fast muscle phenotype. Glycolytic enzymes such as hexokinase and pyruvate kinase were increased, and the LDH isoenzyme pattern was clearly shifted from an oxidative to an anaerobic profile. Creatine kinase (CK) and myokinase activities were increased in HS soleus towards EDL values. Moreover, the M-CK mRNA level was greatly increased in soleus, with no change in EDL. However, oxygen consumption rate assessed in situ in saponin skinned fibers (12.5 +/- 0.8 in C and 15.1 +/- 0.9 micromol O2/min/g dw in HS soleus compared to 7.3 +/- 1.3 micromol O2/min/g dw in control EDL), as well as mitochondrial CK (mi-CK) and citrate synthase activities, were preserved in HS soleus. Following deconditioning no change in Km for ADP of mitochondrial respiration, either in the absence (511 +/- 92 in C and 511 +/- 111 microM in HS soleus compared to 9 +/- 4 microM in control EDL) or presence of creatine (88 +/- 10 in C and 95 +/- 16 microM in HS soleus compared to 32 +/- 9 microM in control EDL), was found. The results show that muscle deconditioning induces a biochemical and functional slow to fast phenotype transition in myofibrillar and cytosolic compartments of postural muscle, but not in the mitochondrial compartment, suggesting that these compartments are differently regulated under conditions of decreased activity.  相似文献   

16.
P-31 nuclear magnetic resonance (NMR) is uniquely suited to measure the kinetics of the phosphoryl-exchange reaction catalyzed by creatine kinase in intact mammalian tissue, especially striated muscle. Recently developed transgenic mouse models of the creatine kinase iso-enzyme system open novel opportunities to assess the functional importance of the individual iso-enzymes and their relative contribution to the total in situ flux through the CK reaction. This chapter reviews the most recent findings from NMR flux measurements on such genetic models of CK function. Findings in intact mouse skeletal and cardiac muscle in vivo are compared to data from purified mitochondrial and cytosolic creatine kinase in vitro. The relevance of findings in transgenic animals for the function of CK in wild-type tissue is described and the perspectives of transgenic techniques in future quantitative studies on the creatine kinase iso-enzyme system are indicated.  相似文献   

17.
In the rat pancreatic beta cell, low concentrations of glucose potentiate D-glyceraldehyde (GA)-induced insulin release without any potentiation of the triose-induced elevation of cytosolic free Ca2+ concentration. Namely, 2-3 mM glucose strongly potentiates 5 mM GA-induced insulin release, and the combination of stimulatory concentration of glucose (10 mM) and 5 mM GA elicits far more than additive insulin release: this glucose action is independent of ATP-sensitive K+ channel closure because it can be seen in the presence of diazoxide, an opener of the K+ channel. The triose-induced elevation of cytosolic free Ca2+ concentration was not potentiated by the presence of 3 mM glucose, and oxidation of labeled GA by the islet cells was not enhanced by the presence of glucose. The glucose action can be mimicked by mannose, but not by galactose, and was suppressed by inhibition of glucose phosphorylation with mannoheptulose or 2-deoxyglucose. Glucose also potentiates 2-ketoisocaproate-induced insulin release. In contrast, a combination of GA and 2-ketoisocaproate elicits only additive insulin release. Strikingly, 3 mM glucose does not potentiate insulin release in response to a depolarizing concentration of K+. Therefore, at least two signal pathways, one from upper glycolytic flux and one from mitochondrial metabolism, must converge to provide the potentiation of insulin release. We conclude that the upper glycolytic flux, acting at a site unrelated to the elevation of cytosolic free Ca2+, potentiates insulin release triggered by triose and mitochondrial fuels.  相似文献   

18.
The diffusion of beta-enolase and creatine phosphokinase in muscle cells has been studied by modulated fringe pattern photobleaching. Beta-enolase is mobile in the sarcoplasm. At 20 degrees C, the diffusion coefficient is 13.5 +/- 2.5 microm2 s(-1) in the cytosol and 56 microm2 s(-1) in aqueous media. As in the case of dextrans of the same hydrodynamic radius, its mobility is hindered by both the crowding of the fluid phase of the cytoplasm and the screening effect due to myofilaments. A fraction of creatine phosphokinase is mobile in the sarcoplasm. Its diffusion coefficient in the cytosol, 4.5 +/- 1 microm2 s(-1), is lower than that of the dextran of equivalent size. The other fraction (20 to 50%) is very slightly mobile, with an apparent diffusion coefficient varying from 0.0035 to 0.043 microm2 s(-1). This low mobility might be attributed to exchange between free and bound creatine phosphokinase. The bound fraction of the endogenous enzyme was localized by immunocytofluorescence on the cultured muscle cells. Our results favor a localization of bound cytosolic creatine phosphokinase on the M-line and a diffuse distribution in all myotubes.  相似文献   

19.
Creatine kinase (CK) provides ATP buffering in skeletal muscle and is expressed as 1) cytosolic myofibrillar CK (M-CK) and 2) sarcomeric mitochondrial CK (ScCKmit) isoforms that differ in their subcellular localization. We compared the isometric contractile and fatigue properties of 1) control CK-sufficient (Ctl), 2) M-CK-deficient (M-CK[-/-]), and 3) combined M-CK/ScCKmit-deficient null mutant (CK[-/-]) diaphragm (Dia) to determine the effect of the absence of M-CK activity on Dia performance in vitro. Baseline contractile properties were comparable across groups except for specific force, which was approximately 16% lower in CK[-/-] Dia compared with M-CK[-/-] and Ctl Dia. During repetitive activation (40 Hz, (1)/(3) duty cycle), force declined in all three groups. This decline was significantly greater in CK[-/-] Dia compared with Ctl and M-CK[-/-] Dia. The pattern of force decline did not differ between M-CK[-/-] and Ctl Dia. We conclude that Dia isometric muscle function is not absolutely dependent on the presence of M-CK, whereas the complete absence of CK acutely impairs isometric force generation during repetitive activation.  相似文献   

20.
OBJECTIVE: To analyze whether increased serum creatine kinase (CK) levels are useful in early detection of ectopic pregnancy (EP). DESIGN: Prospective cohort study. SETTING: Patients in a university-based reproductive endocrinology and infertility practice. PATIENTS: Infertile women who achieved clinical pregnancy. INTERVENTIONS: Serum CK with isoenzymes levels were drawn after sonographic evaluation in patients achieving clinical pregnancy. MAIN OUTCOME MEASURES: Comparison of serum CK levels in patients with EP versus those with normal and abnormal intrauterine pregnancy (IUP), both separately and together as one group. RESULTS: There was no significant difference in mean total CK levels for patients with EP (82.25 +/- 81.39 IU/L; conversion factor to SI unit, 1.00) versus normal IUP (62.54 +/- 44.79 IU/L), abnormal IUP (55.15 +/- 3.46 IU/L), or all IUP (60.87 +/- 40.72 IU/L). The mean gestational ages were similar in all three groups: EP, 46.78 +/- 6.65 days; normal IUP, 47.56 +/- 8.29 days; and abnormal IUP, 47.86 +/- 13.30 days. CONCLUSION: Serum CK levels do not help to predict EP for infertility patients achieving conception. To assist in preventing maternal morbidity, a more discriminative test is needed to identify this condition early in gestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号