首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
对我国航天工业中常用的6.6 mm厚的AZ31B镁合金进行了搅拌摩擦焊试验,获得了型面良好、表面质量光滑、检测无缺陷的焊接接头。对比分析了镁合金在不同工艺参数下的焊接接头拉伸、硬度以及断裂等力学性能;同时,研究了AZ31B镁合金搅拌摩擦焊在不同区域的显微组织结构。结果表明,焊接接头抗拉强度达到250 MPa,为母材的89.3%,焊接接头硬度大于母材硬度,接头断裂位置位于前进边热力影响区附近;焊核区晶粒大小均匀,热力影响区晶粒大小不一,存在焊核区塑性流动和搅拌头的转动双重作用结构,从而论证了航天AZ31B镁合金搅拌摩擦焊的可行性。  相似文献   

2.
选用单板搅拌摩擦焊方法对AZ31镁合金进行焊接试验,利用光学显微分析、微观硬度分析、拉伸性能测试等方法,对焊接接头的微观组织和力学性能进行研究。结果表明,搅拌摩擦焊对AZ31镁合金焊接接头有明显的细化晶粒效果,且焊缝区硬度分布也随晶粒尺寸的降低而呈逐渐升高的趋势。经搅拌摩擦焊后,AZ31镁合金抗拉强度明显提高。  相似文献   

3.
20095045厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能/杨素嫒…//焊接学报.-2009,30(5):1~4 对10mm厚板A231镁合金成功进行了搅拌摩擦焊接,获得成形良好、表面光滑、元裂纹、无气孔的焊接接头。研究该搅拌摩擦焊接头不同区域的显微组织特征,并通过拉伸、冲击和硬度试验分析了焊接接头的力学性能。结果表明,焊缝中心区是均匀细小的等轴晶粒,热力影响区晶粒大小不均匀,  相似文献   

4.
20095045厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能/杨素嫒…//焊接学报.-2009,30(5):1~4 对10mm厚板A231镁合金成功进行了搅拌摩擦焊接,获得成形良好、表面光滑、元裂纹、无气孔的焊接接头。研究该搅拌摩擦焊接头不同区域的显微组织特征,并通过拉伸、冲击和硬度试验分析了焊接接头的力学性能。结果表明,焊缝中心区是均匀细小的等轴晶粒,热力影响区晶粒大小不均匀,  相似文献   

5.
罗华  郝传勇 《焊接学报》2008,29(2):97-100
实现了厚度为2.2 mm铸造镁合金AZ91D薄板的搅拌摩擦焊和钨极氩弧焊,分析了搅拌摩擦焊工艺参数对焊接接头成形的影响和接头组织变化,考察了搅拌摩擦焊接头的力学性能.在搅拌头旋转速度为1 380 r/min时得到了比较理想的焊接接头,而1 960 r/min的转速过大.接头不同区域所受的机械力和热量不同,显微组织明显不同.搅拌区晶粒细小,显微硬度和强度都有所提高.搅拌摩擦焊接头力学性能与热输入有关;与氩弧焊接头相比,搅拌摩擦焊接接头的性能更好.  相似文献   

6.
商业AZ31镁合金搅拌摩擦焊在搅拌头转速1 500 r/min、焊速300 mm/min时可得到致密无缺陷的焊缝,其焊接接头抗拉强度为190.7 MPa,达到母材抗拉强度的82.9%。并对不同工艺焊接接头的宏观缺陷、金相组织、显微硬度、抗拉强度及断口进行抗拉强度逐一分析,同时探讨了它们之间的相互关系。  相似文献   

7.
采用搅拌摩擦搭接焊对1060铝和AZ31镁合金异种金属进行焊接试验,利用三维表面形貌仪、光学显微镜研究了接头组织形貌,采用显微硬度仪、电子万能试验机和扫描电子显微镜研究了接头力学性能和断口形貌。结果表明:焊接参数对焊缝表面形貌影响显著,在1500 r/min,50 mm/min时,焊缝表面形成均匀弧纹。在1000 r/min,70mm/min时焊核区及焊缝界面处晶粒经动态再结晶后细化,随转速/焊速比增加,焊核区金属间化合物含量增加。显微硬度结果表明镁合金侧、铝侧和界面处接头显微硬度有相同的变化趋势,焊核区硬度明显高于铝镁母材区域。断口形貌观察结果表明,1060铝/AZ31镁合金异种金属搅拌摩擦搭接焊断裂模式为脆性断裂,接头拉剪性能在2000 r/min,30mm/min时最差,仅为1750N,这可能与焊缝内金属间化合物的增加有关。  相似文献   

8.
研究了ZK60/AZ31异种镁合金搅拌摩擦焊接头的显微组织、微区织构、显微硬度和力学性能。结果表明,ZK60合金侧和AZ31合金侧焊缝区的晶粒尺寸都相对母材更加细小,且ZK60合金侧热影响区、冠状区和搅拌区的平均晶粒尺寸都要小于AZ31合金侧相应区域;ZK60/AZ31镁合金焊接接头的屈服强度在AZ31合金母材和ZK60合金母材之间,而断后伸长率远小于两种合金母材;ZK60合金侧搅拌区边部、搅拌区中心和AZ31合金侧搅拌区边部的孪晶体积分数分别为7.7%、2.8%和32.3%;ZK60/AZ31镁合金焊接接头的断裂位于后退侧AZ31合金侧过渡区与搅拌区界面处。  相似文献   

9.
分别采用普通搅拌摩擦焊和基于PLC的搅拌摩擦焊方法进行了16 mm厚AZ31镁合金厚板的焊接,并对焊接接头进行了无损探伤、XRD、SEM和力学性能等测试。结果表明,与普通搅拌摩擦焊相比,基于PLC的搅拌摩擦焊有助于显著细化接头焊核区的晶粒,明显改善焊接接头的力学性能,室温抗拉强度从207 N/mm2增加至251 N/mm2,接头系数从80%增加至97%,室温伸长率从8.1%增加至9.2%。  相似文献   

10.
采用过渡液相扩散焊技术对镁合金AZ31B和Cu异种金属进行焊接,利用扫描电镜(SEM)、显微硬度测试及X射线衍射(XRD)对AZ31B/Cu接头界面附近的显微组织及性能进行研究。结果表明,在500℃、40 min、2.5 MPa条件下,AZ31B/Cu接头形成了宽度约为450μm的扩散区。AZ31B/Cu材料接头的显微组织依次为α-Mg和沿其晶界析出相Mg17(Cu,Al)12组成的晶界渗透层/(α-Mg+Mg2Cu)共晶层/Cu2Mg金属间化合物层/(α-Mg+Mg2Cu)共晶层/Cu(Mg)固溶体。随着保温时间的延长,界面区宽度增加,其中Cu2Mg两侧的共晶组织区的增加更为显著。界面区的显微硬度明显高于镁合金和铜基体的显微硬度,界面区明显存在4个不同的硬度分布区;随着保温时间的延长,界面区的显微硬度提高。  相似文献   

11.
Zigzag line is a common defect in friction stir welding(FSW) joint.The formation mechanism of the zigzag line in Al-Cu alloy FSW joint and its influence on the microstructure and mechanical properties during post weld heat treatment(PWHT) were studied by scanning electron microscopy(SEM),microhardness and tensile tests.It is found that the occurrence of zigzag line for PWHT joint is determined by PWHT process which in nature depends on residual stress and thermal stress of FSW joint.The optimization of PWHT process to reduce the residual and thermal stress can trigger for the deterioration of mechanical properties of PWHT joints with zigzag line.No obvious decrease of tensile properties is observed for T6-450 and T6-495 joints although zigzag line appears in the weld.PWHT determines the sizes of zigzag line cracks and consequently determines the fracture location and characteristics of FSW joint.  相似文献   

12.
A new Al-5.8%Mg-0.4%Mn-0.25%Sc-0.10%Zr (wt.%) alloy was successfully welded by tungsten inert gas (TIG) and friction stir welding (FSW) techniques, respectively. The mechanical properties and microstructure of the welded joints were investigated by microhardness measurements, tensile tests, and microscopy methods. The results show that the ultimate tensile strength, yield strength, and elongation to failure are 358, 234 MPa, and 27.6% for TIG welded joint, and 376, 245 MPa and 31.9% for FSW joint, respectively, showing high strength and superior ductility. The TIG welded joint fails in the heat-affected zone and the fracture of FSW joint is located in stirred zone. Al-Mg-Mn-Sc-Zr alloy is characterized by lots of dislocation tangles and secondary coherent Al3(Sc,Zr) particles. The superior mechanical properties of the TIG and FSW joints are mainly derived from the Orowan strengthening and grain boundary strengthening caused by secondary coherent Al3(Sc,Zr) nano-particles (20-40 nm). For new Al-Mg-Mn-Sc-Zr alloy, the positive effect from secondary Al3(Sc, Zr) particles in the base metal can be better preserved in FSW joint than in TIG welded joint.  相似文献   

13.
Abstract

The effects of pin diameter on the microstructure and mechanical properties of friction stir spot welded AZ31B magnesium alloy joints were investigated using microstructural observations, tensile tests and microhardness tests. The results showed that with an increase in the pin diameter, the height and width of the curved interface in the friction stir spot welded AZ31B magnesium alloy joints increased because of the strong effect of stirring and high temperature obtained when large sized pins were adopted. An increase in the pin diameter led to the coarsening of α-Mg grains in the stir zone, thermomechanical affected zone and heat affected zone because of heat generation, resulting in the decrease in microhardness of stir zone, thermomechanical affected zone and heat affected zone. The tensile shear force of the friction stir spot welded AZ31B magnesium alloy joints increased with the increase in pin diameter because the height and width of the curved interface dominated the failure of the specimens.  相似文献   

14.
The corrosion behaviour of friction stir welded (FSW) joints of AA 5083 has been compared to that of MIG welded joints. Pitting and stress corrosion cracking (SCC) resistance in 3.5% NaCl + 0.3 g/l H2O2 and in EXCO (4 M KCl + 0.5 M KNO3 + 0.1 M HNO3) solutions has been determined at 25°C. SCC susceptibility was evaluated by slow strain rate tests (SSRT), at a strain rate of 1 × 10−6 s−1.Welds obtained by FSW technique showed a higher corrosion resistance in EXCO solution and a lower pitting tendency than the base alloy. Electrochemical measurements (corrosion potential measurements, polarization curves recording) evidenced that FSW weld was cathodic to base alloy. FSW joints were not susceptible to SCC in both test solutions, whereas MIG joints cracked in both solutions.  相似文献   

15.
研究12 mm厚AA7075-T651铝合金板搅拌摩擦焊接头的疲劳裂纹扩展行为。从搅拌摩擦焊接头以及母材中截取试样,对试样进行疲劳裂纹扩展实验。对搅拌摩擦焊接头以及母材的横向拉伸性能进行评估。用光学显微镜和透射电镜分析焊接接头的显微组织。用扫描电镜观察试样的断裂表面。与母材相比,焊接接头的ΔKcr降低了10×10-3 MPa·m1/2。搅拌摩擦焊AA7075-T651接头的疲劳寿命明显低于母材的,其原因可归结于焊缝区的析出相在搅拌摩擦焊接过程中的溶解。  相似文献   

16.
Friction stir welding of AZ31 magnesium alloy   总被引:3,自引:0,他引:3  
Friction stir welding (FSW) is an new solid-phase joining technology which has more advantages over fusion welding methods in welding of aluminum and other non-ferrous metals. The effects of welding parameters on mechanical properties and microstructure during friction stir welding of AZ31 magnesium alloy were studied in this paper. Microstructures and mechanical properties of the joints were investigated by means of optical microscopy, scanning electric microscopy ( SEM ) , micro-hardness analysis, and tensile test. Experimental results show that the magnesium alloy can be successfully welded by FSW method, and the ultimate tensile strength (UTS) of FSW joint reaches up to 90 percent of base metal. The microstructures of welded joints exhibit the variation from dynamically recrystallized fine grains to greatly deformed grains. Hardness in nugget zone was found lower than the base metal but not too obvious.  相似文献   

17.
The effects of graphene nanoplates (GNPs) on the microstructures and mechanical properties of nanoparticles strengthening activating tungsten inert gas arc welding (NSA-TIG) welded AZ31 magnesium alloy joints were investigated. It was found that compared with those of activating TIG (A-TIG), and obvious refinement of α-Mg grains was achieved and the finest α-Mg grains of fusion zone of NSA-TIG joints were obtained in the welded joints with TiO2+GNPs flux coating. In addition, the penetrations of joints coated by TiO2+GNPs flux were similar to those coated by the TiO2+SiCp flux. However, the welded joints with TiO2+GNPs flux coating showed better mechanical properties (i.e., ultimate tensile strength and microhardness) than those with TiO2+SiCp flux coating. Moreover, the generation of necking only occurred in the welded joints with TiO2+GNPs flux.  相似文献   

18.
Thixo-molded AE42 Mg alloy was friction stir welded, and the soundness of joints was evaluated, together with the microstructure evolution and mechanical properties in friction stir zones. According to X-ray radiography, the optimum FSW condition range of AE42 alloy exists between AZ61 and AZ31 alloys, and it seems that the optimum welding condition range increases with decreasing Al content in the Mg alloys. There are mainly two kinds of compounds in the thixo-molded AE42 alloy, and FSW has little influence on the grainy Al10RE2Mn7 compound, but it has great influence on Al11RE3 phase, which is changed from lamellar eutectic to small particles after welding. Furthermore, the average diameter of Al11RE3 particles in SZ decreases with increasing the traveling speed at constant rotation speed due to less heat input. The hardness in SZ is higher than that in BM, and tensile strength and elongation are both improved after welding because the stirring refines and uniforms the microstructure and intermetallic compounds.  相似文献   

19.
CA6NM quenched and tempered steel is used in hydraulic turbine rotors, pumps and compressors. The objective of this research is to determine the fracture toughness of tempered and quenched CA6NM alloy, and of its welded joints without post-welded heat treatment (PWHT). To this end, compact tension (CT) test pieces are milled from pieces of CA6NM steel for evaluation of the toughness of the alloy used in a hydraulic turbine. Due to the elasto-plastic condition of the material, the test pieces are tested by means of the J integral concept, setting out the resistance curve JR and the crack initiation J IC. In welded joints produced from ingots, without PWHT, the fragility they show does not allow the JR curve for the CT test pieces to be drawn up, and the toughness is characterized by means of the K IC concept. The welding procedure looks at the probable conditions for repair of cavitation wear to the turbine, where PWHT cannot be carried out. The results confirmed the higher toughness for the CA6NM steel, with values approximately three times higher than those obtained in the welded joints without PWHT. In terms of the fracture, the CA6NM steel shows ductile behaviour while the welded joint without PWHT shows fragile behaviour.  相似文献   

20.
Equal channel angular pressing (ECAP) is an effective thermo-mechanical process to make ultrafine grains.An investigation was carried out on the friction stir welding (FSW) of ECAPed AZ31 magnesium alloys with a thickness of 15 mm.For different process parameters,the optimum FSW conditions of ECAPed AZ31 magnesium alloys were examined.The basic characterization of weld formation and the mechanical properties of the joints were discussed.The results show that the effect of welding parameters on welding quality was evident and welding quality was sensitive to welding speed.Sound joints could be obtained when the welding speed was 37.5 mm/min and the rotation speed of the stir tool was 750 r/min.The maximum tensile strength (270 MPa) of FSW was 91% that of the base materials.The value of microhardness varied between advancing side and retreating side because of the speed field near the pin of the stir tool,which weakened the deformed stress field.The value of microhardness of the welding zone was lower than that of the base materials.The maximum value was located near the heat-affected zone (HAZ).Remarkable ductile character was observed from the fracture morphologies of welded joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号