首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Differential scanning calorimetry (DSC) was performed to investigate the cure behavior of epoxy networks of diglycidyl ether of bisphenol A/poly(ethylene oxide) (DGEBA/PEO) cured with 4,4'-diaminodiphenyl sulfone (DDS). An interesting miscibility has been recently reported for DGEBA/PEO networks of a semi-interpenetrating structure cured with aromatic amine. This study focused on the cure behavior and effects of miscible polymer diluents on cure kinetics. The physical miscible state between the polymer and epoxy was found to exert no alteration on the cure mechanism, which remained to be autocatalytic for DDS amine-curing of all DGEBA/PEO mixtures as well as the pure DGEBA. The PEO component, being in a miscible state with the epoxy/DDS throughout the cure, acted as a diluent for the reactive DGEBA epoxy and DDS components. The dilution effect could be partially compensated by raising the DDS/epoxy ratio in proportion to increased PEO fraction in DGEBA/PEO/DDS mixtures.  相似文献   

2.
Epoxy resin (diglycidyl ether of bisphenol A, DGEBA)/cyanate ester mixtures were cured with a curing agent, 4,4′-diaminodiphenylsulfone, and the effect of cyanate ester resin on the cure behavior and thermal stability in the epoxy resin was investigated with a Fourier transform infrared spectrometer, a rheometer, a dynamic mechanical analyzer, and a thermogravimetric analyzer. Cure reactions in the epoxy/cyanate ester mixture were faster than that of the neat epoxy system. The cure reaction was accelerated by increasing the cyanate ester resin component. Glass transition temperature and thermal stability in the cured resins were increased with increasing cyanate ester resin component. This may be caused by the increase of crosslinking density due to the polycyclotrimerization of the cyanate ester monomer to form triazine rings and the reaction of cyanate ester resin with the epoxy network. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 85–90, 1997  相似文献   

3.
The cure reaction and phase separation mechanism of a cyanate ester‐cured epoxy and its blends with polyphenylene oxide (PPO) were studied. An autocatalytic mechanism was observed for the epoxy and its blends. The reaction rate of the blends was higher than that of the neat epoxy at initial stage; however, the reached conversion decreased with PPO content. FTIR analysis revealed that the cyanate functional group reactions were accelerated by adding PPO and indicated that several coreactions have occurred. This was caused by the reaction of cyanate ester with the PPO reactive chain ends. But at a later stage of cure, the reaction could not progress further due to diffusional limitation of PPO. To understand the relationship between the cure kinetics and phase separation of the blends, the morphology of the blends during cure was examined. When the homogeneous epoxy/PPO blends with low PPO content (10 phr) were cured isothermally, the blends were separated by nucleation and growth (NG) mechanism to form the PPO particle structure. But at high PPO content (30 phr), the phase separation took place via spinodal decomposition (SD). SD is favored near critical concentration and high cure rate system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1139–1145, 2006  相似文献   

4.
Epoxy based on diglycidyl ether of bisphenol A + 4,4′diaminodiphenylsulfone blended with poly(vinyl acetate) (PVAc) was investigated through differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and environmental scanning electron microscopy (ESEM). The influence of PVAc content on reaction induced phase separation, cure kinetics, morphology and dynamic‐mechanical properties of cured blends at 180°C is reported. Epoxy/PVAc blends (5, 10 and 15 wt % of PVAc content) are initially miscible but phase separate upon curing. DMTA α‐relaxations of cured blends agree with Tg results by DSC. The conversion‐time data revealed the cure reaction was slower in the blends than in the neat system, although the autocatalytic cure mechanism was not affected by the addition of PVAc. ESEM showed the cured epoxy/PVAc blends had different morphologies as a function of PVAc content: an inversion in morphology took place for blends containing 15 wt % PVAc. The changes in the blend morphology with PVAc content had a clear effect on the DMTA behavior. Inverted morphology blends had low storage modulus values and a high capability to dissipate energy at temperatures higher than the PVAc glass‐transition temperature, in contrast to the behavior of neat epoxy and blends with a low PVAc content. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1507–1516, 2007  相似文献   

5.
Dielectric and rheological measurements are reported for the cure in a series of mixtures of an epoxy-acrylate with n-butyl methacrylate. The level of the initiator and properties of the epoxy acrylate and n-butyl methacrylate influence the cure characteristics and morphology of the film formed. Analysis of the rheological data indicates that during the curing process, microphase separation occurs within the mixture. The changes in the dielectric relaxation behavior with composition of the completely cured material is also consistent with microphase separation occurring in these resins while they are cured.  相似文献   

6.
Cure behavior, miscibility, and phase separation have been studied in blends of polyphenylene oxide (PPO) with diglycidyl ether of bisphenol A (DGEBA) resin and cyanate ester hardener. An autocatalytic mechanism was observed for the epoxy/PPO blends and the neat epoxy. It was also found that the epoxy/PPO blends react faster than the neat epoxy. During cure, the epoxy resin is polymerized, and the reaction‐induced phase separation is accompanied by phase inversion upon the concentration of PPO greater than 50 phr. The dynamic mechanical measurements indicate that the two‐phase character and partial mixing existed in all the mixtures. However, the two‐phase particulate morphology was not uniform especially at a low PPO content. In order to improve the uniformity and miscibility, triallylisocyanurate (TAIC) was evaluated as an in situ compatibilizer for epoxy/PPO blends. TAIC is miscible in epoxy, and the PPO chains are bound to TAIC network. SEM observations show that adding TAIC improves the miscibility and solvent resistance of the epoxy/PPO blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 26–34, 2000  相似文献   

7.
Curing catalyst for epoxy resins was newly found. The catalyst consists of aluminum complex and silanol. Lack of one component of the pair does not cure epoxy resins. The epoxy resins cured with the catalyst are characterized by excellent electrical properties, especially at high temperature, due to the absence of strong acid species in the cured epoxy resin matrix. Heat-resistant property of the resin was also excellent. These properties were compared with those of epoxy resin cured with commonly used BF3 complex.  相似文献   

8.
Abstract

The morphology and mechanical properties of poly(ethylene terephthalate) (PET)–epoxy blends and the application of these blends in continuous glass fibre reinforced composites have been investigated. Epoxy resin was applied as a reactive solvent for PET to obtain homogeneous solutions with a substantially decreased melt viscosity. The epoxy resin in these solutions was cured using an amine hardener according to two different schedules. In the first, high temperature curing at 260°C preceded low temperature crystallisation of the PET at 180°C. In the second, the PET was allowed to crystallise prior to low temperature curing at 180°C. After cure, all blends revealed a phase separated morphology of dispersed epoxy in a continuous PET matrix. The flexural strength and failure strain of all cured blends showed an increase with increasing epoxy content, whereas the high temperature cured blends exhibited overall lower flexural properties than those cured at the lower temperature. Microstructural analysis and flexural properties of continuous glass fibre reinforced PET–epoxy laminates showed that the composites obtained had a low void content. These PET–epoxy laminates had increased inplane shear strength in comparison with unmodified PET based laminates, indicating considerably increased fibre–matrix adhesion.  相似文献   

9.
Phase-separation behavior of aromatic amine-cured diglycidyl ether of bisphenol-A (DGEBA) epoxy oligomer and poly(ether imide) (PEI) engineering thermoplastic-modifier mixtures was investigated by means of small-angle light scattering (SALS) and optical microscopy. The starting reactant mixtures comprising epoxy, PEI, and the curing agents, namely diamino diphenyl sulfone (DDS) and methylene dianiline (MDA), were found to be single phase. During curing, phase separation occurred in the epoxy/PEI/DDS system, whereas no phase separation took place in MDA-cured epoxy/PEI blends. The difference between the two systems has been attributed to thermodynamic and kinetic aspects of cure reaction in thermoplastic-modified thermosetting (TMT) polymeric blends. Spinodal decomposition as characterized by an increase of scattered intensity, shift of the peak angle to a smaller scattering angle, and development of a regularly phase-separated structure followed by coarsening was found to be the dominant mechanism of reaction-induced phase separation in DDS-cured epoxy/PEI blend compositions.  相似文献   

10.
A manufacturing process is described that builds complex composite parts using a layered building process in which each layer of pre‐preg composite is laid and cured as the build progresses. In order to employ on‐line curing without molds, resin technologies that provide fast curing at room temperature—ultraviolet curable and epoxy/polyamide—were investigated. UV‐curable resins were tested for their ability to “shadow” cure by exposing carbon fiber composites to ultraviolet light to determine if the cure propagated from areas directly exposed to areas under fibers. Though ultraviolet curing showed advantages in cure time and low volatile production, very minimal “shadow” curing was achieved. A low temperature curing epoxy/polyamide mixture was tested for the effects of cure temperature, cure time, and mix ratio on the final degree of cure (%DOC) and glass transition temperature (Tg). Layers were made using different resin mixtures, partially cured, and used to build layered parts to determine curing characteristics during the lay‐up process. In the epoxy/polyamide mixtures, mix ratio had little effect on the reaction rate but did affect the Tg. A kinetic model was established for the resin epoxy/polyamide system for optimizing processing conditions during fabrication. However, the model failed to correctly predict the fabrication. The reaction of the material was different during the fabrication process than during the isothermal cure due to the presence of oxygen. During the build process, the degree of cure in each layer increased significantly over the prestaged degree of cure in less time than theoretically predicted. However, the final resin properties, such as Tg, were still below the specifications for high performance parts.  相似文献   

11.
The modification of the curing behaviour and the phase separation process for an epoxy resin blended with a crystalline thermoplastic was investigated in the case of the diglycidylether of bisphenol‐A (DGEBA)/4,4′‐methylene bis(3‐chloro‐2,6‐diethylaniline) (MCDEA) blended with syndiotactic polystyrene (sPS) and cured at 220 °C. Phase separation taking place during curing of the blend was investigated by differential scanning calorimetry (DSC) and optical microscopy in order to get a better understanding of the complex interactions between cure kinetics of epoxy matrix and crystallisation of sPS, both influenced by blend composition. Results suggested that phase separation and crystallisation of sPS occurred at almost similar times, with phase separation just being ahead of crystallisation. DSC and near‐infrared measurements were used for the determination of the cure kinetics. Slow delays on the cure reactions were observed during the first minutes for the sPS‐containing blends compared with the neat DGEBA/MCDEA system but, after some time, the reaction rate became faster for the blends than for the neat matrix. Phase separation occurring in the mixtures may explain this particular phenomenon. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
Phase morphology and phase separation behavior of amine‐cured bisphenol‐A diglycidyl ether epoxy and phenoxy mixtures have been investigated by means of time‐resolved small angle light scattering, optical microscopy, and scanning electron microscopy. The starting reactant mixtures composed of epoxy, phenoxy, and curing agents such as diaminodiphenyl sulfone (DDS) and methylene dianiline (MDA) were found to be completely miscible. Upon curing with DDS at 180°C, phase separation took place in various epoxy/phenoxy blends (compositions ranging from 10–40% phenoxy), whereas the MDA curing showed no indication of phase separation. The mechanical and physical properties of single‐phase and two‐phase networks were examined, in that the DDS‐cured epoxy/phenoxy blends having a two‐phase morphology showed improved ductility and toughness without significantly losing other mechanical and thermal properties such as modulus, tensile strength, glass transition and heat deflection temperatures. The energy absorbed to failure during the drop weight impact event was also found to improve relative to those of the single‐phase MDA‐cured blend as well as of the neat epoxy. Such property enhancement of the DDS‐cured blends has been discussed in relation to the two‐phase morphology obtained via scanning electron microscopy micrographs of fractured surfaces. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1257–1268, 2000  相似文献   

13.
李媛  白思聪 《上海涂料》2013,(12):23-26
通过松香分别与丙烯酸、反丁烯二酸等不饱和羧酸进行Diels-Alder加成反应,再与乙二胺反应,合成松香酰胺基单胺,采用^1H-NMR、FT-IR和XPS表征产物的结构.以此作为双酚A环氧树脂的固化剂.通过热失重分析(TGA)表征了固化产物的热性能.固化产物的5%热失重温度都在300℃以上,表明松香酰胺类固化产物具有良好的热稳定性.  相似文献   

14.
Rheokinetic and phase separation behavior of diglycidylether of bisphenol‐A–4,4′‐diaminodiphenyl methane epoxy mixtures, modified with a constant amount (15 wt %) of poly(methyl methacrylate) (PMMA), have been investigated. Stoichiometric epoxy/amine mixtures precured at 80°C several times presented various levels of miscibility. Differential scanning calorimetry (DSC) and dynamic mechanic thermal analysis were used for rheokinetic studies of curing and also for testing the thermal behavior of the fully cured mixtures. Phase separation, through curing, was simultaneously studied by transmission optical microscopy and DSC, showing an excellent correlation between the results obtained with both techniques. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 772–780, 1999  相似文献   

15.
Montmorillonite nanocomposite systems obtained from epoxy cured using anhydride and the addition of a reacting flame retardant are studied in this paper. In particular, a thermokinetic analysis of the behavior of five different compounds was performed, using a differential scanning calorimeter. The isothermal tests showed double reaction peaks, due to the cure reactions of DGEBA/acid anhydride systems. The comparisons between dynamic thermograms (and between isothermal ones, too) for the different mixtures also showed that the addition of other active substances (such as a nanofiller or a flame retardant additive) does not change the mechanism of crosslinking from a qualitative point of view, but both the nanoreinforcement and the flame retardant seemed to exert an evident catalytic action on the cure reactions. A model describing the cure behavior of the aforementioned materials is proposed in this work. This model takes into account the fact that the reaction mechanism of each analyzed system is composed of a couple of parallel phenomena: the fast opening of anhydride ring (corresponding to a first exothermic peak and characterized by “n‐th order” kinetics) and resin networking (corresponding to a second exothermic peak and characterized by an “auto‐catalytic with zero initial velocity” behavior). The verification of the proposed model was performed by means of a comparison between experimental data (normalized curves derived from DSC thermograms) and theoretical data (derived from a numerical integration—using the second order Runge–Kutta method—of the model‐representative equation) and provided very good results. This allows one to apply such a model to any engineering process problem concerning the cure of DGEBA/acid anhydride/phyllosilicate nanocomposite systems. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1676–1689, 2004  相似文献   

16.
环氧树脂改性聚氨酯耐热性能的研究   总被引:6,自引:0,他引:6  
端异氰酸酯基聚氨酯预聚体与环氧树脂E-51形成了互穿网络,通过热重分析仪(TGA)研究了完全固化后的互穿网络的热分解行为、透射电镜研究了IPN的相分离行为,及拉伸强度、硬度等对其进行了表征。结果表明,经过环氧树脂改性的聚氨酯的耐热性能比纯聚氨酯得到了提高,且力学性能也有所改善,并对其机理进行了阐述。  相似文献   

17.
Phenolphthalein poly(ether ketone) (PEK‐C) was blended with the diglycidyl ether of bisphenol A epoxy resin and bisphenol A dicyanate ester. The effect of cyanate content on cure behaviors, thermal and mechanical properties of PEK‐C/epoxy/cyanate mixtures was investigated. As results, the increase of cyanate content slightly hindered the cure reaction of the mixtures. Fourier transform infrared results indicated that the curing reaction of the cured mixtures was complete. When the cyanate ester content increased, the flexural properties and Tg values were enhanced, and the initial thermal decomposition temperature was reduced. A significant improvement in fracture toughness was obtained when the cyanate group in the mixtures was excessive. The fracture toughness can be well explained by SEM observations. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
DGEBA (diglycidyl ether of bisphenol A)–ATBN (amine terminated butadiene acrylonitrile copolymer) blends exhibited upper critical solution temperature (UCST) behavior. Triethylene tetramine (TETA) was introduced as an amine curing agent of epoxy. The real-time phase separation behavior of ATBN-added epoxy system during cure was investigated using laser light scattering. SEM (scanning electron microscopy) and optical microscopy were also employed to observe the morphology of the epoxy blends. Since the DGEBA–ATBN blends showed UCST behavior, the degree of phase separation when cured at low temperature was higher than that when cured at high temperature. The domain correlation length increased as the curing temperature was lowered. Dynamic mechanical analysis (DMA) results indicated that the phase inversion occurred above 20 wt% of ATBN composition.  相似文献   

19.
Monitoring the reaction of an aromatic diamine cure agent with epoxy by fluorescence technique was used for cure characterization of the interphase in epoxy/glass and epoxy/carbon composites. The effect of the various surface treatments was first studied by the model interphase obtained by using a quartz plate for glass or a modified quartz plate for carbon surface. Aminosilane treated quartz cured faster and showed increased cure extent, while water aging and air oxidation showed almost no effect on the cure kinetics in comparison to the untreated quartz surface. For a model carbon surface, air oxidation showed a faster reaction only at the early stage of cure. The effects of the various surface treatments on glass or carbon fiber were also studied with the actual composites made by a thin coating of epoxy-diamine melt on glass or carbon fiber bundles. Epoxy/glass fiber composite showed a similar trend as the model interphase system. In the case of epoxy/carbon fiber composite, both air oxidation and water aging treatment showed a faster cure reaction at the early stage of cure. Furthermore, air oxidation treatment for the epoxy/carbon fiber composite showed somewhat increased cure extent. The reasons for these trends have been discussed. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 63: 1769–1775, 1997  相似文献   

20.
o-Cresol novolac-type epoxy resins having hydroxymethyl group were synthesized. These epoxy resins were cured with a mixture of 4,4′-diaminodiphenylmethane and m-phenylenediamine (molar ratio, 6:4) as a hardener. Effects of molecular weight distribution of epoxy resins on curing behavior were studied. Curing behavior of epoxy resins with hardener were examined by differential scanning calorimetery (DSC), and cure reaction parameters were obtained. Viscoelastic properties of the cured epoxy resins were studied by dynamic mechanical analyzer. It was found that the lower the average molecular weight of the epoxy resin, that is, the higher the concentration of hydroxymethyl group, the shorter the onset time of exothermal reaction, the higher the rate constant (k), and the lower the activation energy (Ea) were. It was also found that glass transition temperature (Tg) of fully cured epoxy resins was higher than those of fully cured general novolac-type epoxy resins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号