首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this research, we describe the properties of three-component composite foam scaffolds based on poly(ε-caprolactone) (PCL) as a matrix and hydroxyapatite whiskers (HAP) and L-Lysine as fillers (PCL/HAP/Lys with wt% ratio 50/48/2). The scaffolds were prepared using a thermally induced phase separation technique supported by salt leaching (TIPS-SL). All materials were precisely characterized: porosity, density, water uptake, wettability, DSC, and TGA measurements and compression tests were carried out. The microstructure of the obtained scaffolds was analyzed via SEM. It was found that the PCL/HAP/Lys scaffold has a 45% higher Young’s modulus and better wettability compared to the PCL/HAP system. At the same time, the porosity of the system was ~90%. The osteoblast hFOB 1.19 cell response was also investigated in osteogenic conditions (39 °C) and the cytokine release profile of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α was determined. Modification of PCL scaffolds with HAP and L-Lysine significantly improved the proliferation of pre-osteoblasts cultured on such materials.  相似文献   

2.
Whole genome sequences of two Acinetobacter baumannii clinical isolates, 48-1789 and MAR24, revealed that they carry the KL106 and KL112 capsular polysaccharide (CPS) biosynthesis gene clusters, respectively, at the chromosomal K locus. The KL106 and KL112 gene clusters are related to the previously described KL11 and KL83 gene clusters, sharing genes for the synthesis of l-rhamnose (l-Rhap) and 6-deoxy-l-talose (l-6dTalp). CPS material isolated from 48-1789 and MAR24 was studied by sugar analysis and Smith degradation along with one- and two-dimensional 1H and 13C NMR spectroscopy. The structures of K106 and K112 oligosaccharide repeats (K units) l-6dTalp-(1→3)-D-GlcpNAc tetrasaccharide fragment share the responsible genes in the respective gene clusters. The K106 and K83 CPSs also have the same linkage between K units. The KL112 cluster includes an additional glycosyltransferase gene, Gtr183, and the K112 unit includes α l-Rhap side chain that is not found in the K106 structure. K112 further differs in the linkage between K units formed by the Wzy polymerase, and a different wzy gene is found in KL112. However, though both KL106 and KL112 share the atr8 acetyltransferase gene with KL83, only K83 is acetylated.  相似文献   

3.
Optical rotatory dispersion (ORD) is a beautiful analytical technique for the study of chiral molecules and polymers. In this study, ORD was applied successfully to follow the degree of polycondensation of l-(+)-lactic acid toward the formation of poly(lactic acid) oligomers (PLAO) and high molecular weight poly(l-lactic acid) (PLLA) in a simple esterification reaction equipment. PLLA is a biodegradable polymer obtainable from renewable raw materials. The racemization of the intrinsically isotactic PLLA through thermal treatment can be easily followed through the use of ORD spectroscopy. Organic or molecular electronics is a hot topic dealing with the combination of π-conjugated organic compounds and polymers with specific properties (e.g., chirality) which can be exploited to construct optoelectronic devices, such as organic light-emitting diodes (OLEDs), organic photovoltaic (OPV) high efficiency cells, switchable chirality devices, organic field-effect transistors (OFETs), and so on. ORD spectroscopy was applied to study either the gigantic optical rotation of PLLA films, as well as to detect successfully the excitonic coupling, occurring in thin solid PLLA green film loaded with a combination of two dyes: SY96 (a pyrazolone dye) and PB16 (the metal-free phthalocyanine pigment). The latter compound PLLA loaded with SY96 and PB16 shows a really gigantic optical activity in addition to typical ORD signal due to exciton coupling and may be considered as a simple and easily accessible model composite of a chiral polymer matrix combined with π-conjugated dyes for molecular electronics studies.  相似文献   

4.
5.
We previously showed that ubiquitous overexpression of the chromatin remodeling factor SWItch3-related gene (SRG3) promotes M2 macrophage differentiation, resulting in anti-inflammatory responses in the experimental autoimmune encephalomyelitis model of multiple sclerosis. Since hepatic macrophages are responsible for sepsis-induced liver injury, we investigated herein the capacity of transgenic SRG3 overexpression (SRG3β-actin mice) to modulate sepsis in mice exposed to lipopolysaccharide (LPS) plus d-galactosamine (d-GalN). Our results demonstrated that ubiquitous SRG3 overexpression significantly protects mice from LPS/d-GalN-induced lethality mediated by hepatic M1 macrophages. These protective effects of SRG3 overexpression correlated with the phenotypic conversion of hepatic macrophages from an M1 toward an M2 phenotype. Furthermore, SRG3β-actin mice had decreased numbers and activation of natural killer (NK) cells but not natural killer T (NKT) cells in the liver during sepsis, indicating that SRG3 overexpression might contribute to cross-talk between NK cells and macrophages in the liver. Finally, we demonstrated that NKT cell-deficient CD1d KO/SRG3β-actin mice are protected from LPS/d-GalN-induced sepsis, indicating that NKT cells are dispensable for SRG3-mediated sepsis suppression. Taken together, our findings provide strong evidence that SRG3 overexpression may serve as a therapeutic approach to control overwhelming inflammatory diseases such as sepsis.  相似文献   

6.
In bone homeostasis, bone loss due to excessive osteoclasts and inflammation or osteolysis in the bone formation process cause bone diseases such as osteoporosis. Suppressing the accompanying oxidative stress such as ROS in this process is an important treatment strategy for bone disease. Therefore, in this study, the effect of (2R)-4-(4-hydroxyphenyl)-2-butanol 2-O-β-d-apiofuranosyl-(1→6)-β-d-glucopyranoside (BAG), an arylbutanoid glycoside isolated from Betula platyphylla var. japonica was investigated in RANKL-induced RAW264.7 cells and LPS-stimulated MC3E3-T1 cells. BAG inhibited the activity of TRAP, an important marker of osteoclast differentiation and F-actin ring formation, which has osteospecific structure. In addition, the protein and gene levels were suppressed of integrin β3 and CCL4, which play an important role in the osteoclast-induced bone resorption and migration of osteoclasts, and inhibited the production of ROS and restored the expression of antioxidant enzymes such as SOD and CAT lost by RANKL. The inhibitory effect of BAG on osteoclast differentiation and ROS production appears to be due to the inhibition of MAPKs phosphorylation and NF-κβ translocation, which play a major role in osteoclast differentiation. In addition, BAG inhibited ROS generated by LPS and effectively restores the mineralization of lost osteoblasts, thereby showing the effect of bone formation in the inflammatory situation accompanying bone loss by excessive osteoclasts, suggesting its potential as a new natural product-derived bone disease treatment.  相似文献   

7.
In this research, we synthesize and characterize poly(glycerol sebacate) pre-polymer (pPGS) (1H NMR, FTiR, GPC, and TGA). Nano-hydroxyapatite (HAp) is synthesized using the wet precipitation method. Next, the materials are used to prepare a PGS-based composite with a 25 wt.% addition of HAp. Microporous composites are formed by means of thermally induced phase separation (TIPS) followed by thermal cross-linking (TCL) and salt leaching (SL). The manufactured microporous materials (PGS and PGS/HAp) are then subjected to imaging by means of SEM and µCT for the porous structure characterization. DSC, TGA, and water contact angle measurements are used for further evaluation of the materials. To assess the cytocompatibility and biological potential of PGS-based composites, preosteoblasts and differentiated hFOB 1.19 osteoblasts are employed as in vitro models. Apart from the cytocompatibility, the scaffolds supported cell adhesion and were readily populated by the hFOB1.19 preosteoblasts. HAp-facilitated scaffolds displayed osteoconductive properties, supporting the terminal differentiation of osteoblasts as indicated by the production of alkaline phosphatase, osteocalcin and osteopontin. Notably, the PGS/HAp scaffolds induced the production of significant amounts of osteoclastogenic cytokines: IL-1β, IL-6 and TNF-α, which induced scaffold remodeling and promoted the reconstruction of bone tissue. Initial biocompatibility tests showed no signs of adverse effects of PGS-based scaffolds toward adult BALB/c mice.  相似文献   

8.
The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency.  相似文献   

9.
Four new secondary metabolites, 3α-((E)-Dodec-1-enyl)-4β-hydroxy-5β-methyldihydrofuran-2-one (1), linderinol (6), 4′-O-methylkaempferol 3-O-α-l-(4″-E-p-coumaroyl)rhamnoside (11) and kaempferol 3-O-α-l-(4″-Z-p-coumaroyl) rhamnoside (12) with eleven known compounds—3-epilistenolide D1 (2), 3-epilistenolide D2 (3), (3Z,4α,5β)-3-(dodec-11-ynylidene)-4-hydroxy-5-methylbutanolide (4), (3E,4β,5β)-3-(dodec-11-ynylidene)-4-hydroxy-5-methylbutanolide (5), matairesinol (7), syringaresinol (8), (+)-pinoresinol (9), salicifoliol (10), 4″-p-coumaroylafzelin (13), catechin (14) and epicatechin (15)—were first isolated from the aerial part of Lindera akoensis. Their structures were determined by detailed analysis of 1D- and 2D-NMR spectroscopic data. All of the compounds isolated from Lindera akoensis showed that in vitro anti-inflammatory activity decreases the LPS-stimulated production of nitric oxide (NO) in RAW 264.7 cell, with IC50 values of 4.1–413.8 μM.  相似文献   

10.
Purpose: In order to study novel therapeutic approaches taking advantage of natural compounds showing anticancer and anti-proliferative effects, we focused our interest on S-adenosyl-l-methionine, a naturally occurring sulfur-containing nucleoside synthesized from adenosine triphosphate and methionine by methionine adenosyltransferase, and its potential in overcoming drug resistance in colon cancer cells devoid of p53. Results: In the present study, we demonstrated that S-adenosyl-l-methionine overcomes uL3-mediated drug resistance in p53 deleted colon cancer cells. In particular, we demonstrated that S-adenosyl-l-methionine causes cell cycle arrest at the S phase; inhibits autophagy; augments reactive oxygen species; and induces apoptosis in these cancer cells. Conclusions: Results reported in this paper led us to propose S-adenosyl-l-methionine as a potential promising agent for cancer therapy by examining p53 and uL3 profiles in tumors to yield a better clinical outcomes.  相似文献   

11.
The introduction of α-helical structure with a specific helix–helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) hydrophilic chain and hydrophobic α-helix (l-Leu-Aib)6 involving the LxxxLxxxL sequence, which induces homo-dimerization due to the concave–convex interaction, formed a nanotube with a uniform 80 nm diameter. In this study, we investigated the importance of the LxxxLxxxL sequence for tube formation by comparing amphiphilic polypeptide SL4A4L4 with hydrophobic α-helix (l-Leu-Aib)2-(l-Ala-Aib)2-(l-Leu-Aib)2 and SL12. SL4A4L4 formed spherical vesicles and micelles. The effect of the LxxxLxxxL sequence elongation on tube formation was demonstrated by studying assemblies of PSar-b-(l-Ala-Aib)-(l-Leu-Aib)6-(l-Ala-Aib) (SA2L12A2) and PSar-b-(l-Leu-Aib)8 (SL16). SA2L12A2 formed nanotubes with a uniform 123 nm diameter, while SL16 assembled into vesicles. These results showed that LxxxLxxxL is a necessary and sufficient sequence for the self-assembly of nanotubes. Furthermore, we fabricated a double-layer nanotube by combining two kinds of nanotubes with 80 and 120 nm diameters—SL12 and SA2L12A2. When SA2L12A2 self-assembled in SL12 nanotube dispersion, SA2L12A2 initially formed a rolled sheet, the sheet then wrapped the SL12 nanotube, and a double-layer nanotube was obtained.  相似文献   

12.
A new benzo[c]phenanthridine, oxynorchelerythrine (1), and two new benzenoid derivatives, methyl 4-(2-hydroxy-4-methoxy-3-methyl-4-oxobutoxy)benzoate (2) and (E)-methyl 4-(4-((Z)-3-methoxy-3-oxoprop-1-enyl)phenoxy)-2-methylbut-2-enoate (3), have been isolated from the twigs of Zanthoxylum ailanthoides, together with 11 known compounds (4–14). The structures of these new compounds were determined through spectroscopic and MS analyses. Among the isolated compounds, decarine (4), (−)-syringaresinol (6), (+)-episesamin (8), glaberide I (9), (−)-dihydrocubebin (10), and xanthyletin (11) exhibited potent inhibition (IC50 values ≤ 4.79 μg/mL) of superoxide anion generation by human nutrophils in response to N-formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB). Compounds 4, 8, and 11 also inhibited fMLP/CB-induced elastase release with IC50 values ≤ 5.48 μg/mL.  相似文献   

13.
Hydroxyapatite (HA) is a well-known biocompatible bone substitute. Porous HA is more resorbable and osteoconductive compared with non-porous HA, and has been studied both experimentally and clinically. However, the mechanical strength of porous HA scaffolds is known to be weak. In this study, we developed a porous HA scaffold coated with a synthetic biodegradable polymer, poly(l-lactic acid) (PLLA), to strengthen the scaffold. PLLA-coated HA pellets were used to investigate the in vitro proliferation and alkaline phosphatase (ALP) activity of osteoblasts. PLLA-coated porous HA scaffolds were observed using scanning electron microscopy to investigate surface characteristics, porosity, and mechanical strength. PLLA coating concentration varied from 2 to 10 wt%. Osteoblast proliferation was higher in HA samples coated with PLLA compared with non-coated. ALP activity was highest on 8 wt% PLLA-coating after 3 days and on 4 wt% and 6 wt% PLLA after 9 and 12 days. Porous HA scaffolds with higher concentrations of PLLA were found to have a smoother, flatter surface. This enhanced proliferation and attachment of osteoblasts onto the porous HA scaffold. PLLA solution at a concentration of 10 wt% decreased scaffold porosity to half that of HA scaffolds with no PLLA coating. Scaffold mechanical strength was increased two-fold with a PLLA concentration of 2 wt%. Based on in vitro experimentation, it can be concluded that PLLA-coating on porous HA scaffolds enhances both the biocompatibility and the mechanical strength.  相似文献   

14.
Lysine 5,6-aminomutase (5,6-LAM) and ornithine 4,5-aminomutase (4,5-OAM) are two of the rare enzymes that use assistance of two vitamins as cofactors. These enzymes employ radical generating capability of coenzyme B12 (5′-deoxyadenosylcobalamin, dAdoCbl) and ability of pyridoxal-5′-phosphate (PLP, vitamin B6) to stabilize high-energy intermediates for performing challenging 1,2-amino rearrangements between adjacent carbons. A large-scale domain movement is required for interconversion between the catalytically inactive open form and the catalytically active closed form. In spite of all the similarities, these enzymes differ in substrate specificities. 4,5-OAM is highly specific for d-ornithine as a substrate while 5,6-LAM can accept d-lysine and l-β-lysine. This review focuses on recent computational, spectroscopic and structural studies of these enzymes and their implications on the related enzymes. Additionally, we also discuss the potential biosynthetic application of 5,6-LAM.  相似文献   

15.
(1) Background: Chiral nanoparticular systems have recently emerged as a compelling platform for investigating stereospecific behavior at the nanoscopic level. We describe chiroselective supramolecular interactions that occur between DNA oligonucleotides and chiral polyurea nanocapsules. (2) Methods: We employ interfacial polyaddition reactions between toluene 2,4-diisocyanate and lysine enantiomers that occur in volatile oil-in-water nanoemulsions to synthesize hollow, solvent-free capsules with average sizes of approximately 300 nm and neutral surface potential. (3) Results: The resultant nanocapsules exhibit chiroptical activity and interact differentially with single stranded DNA oligonucleotides despite the lack of surface charge and, thus, the absence of significant electrostatic interactions. Preferential binding of DNA on d-polyurea nanocapsules compared to their l-counterparts is demonstrated by a fourfold increase in capsule size, a 50% higher rise in the absolute value of negative zeta potential (ζ-potential), and a three times lower free DNA concentration after equilibration with the excess of DNA. (4) Conclusions: We infer that the chirality of the novel polymeric nanocapsules affects their supramolecular interactions with DNA, possibly through modification of the surface morphology. These interactions can be exploited when developing carriers for gene therapy and theranostics. The resultant constructs are expected to be highly biocompatible due to their neutral potential and biodegradability of polyurea shells.  相似文献   

16.
Porous scaffolds based on blends of high crystalline Poly-l-lactic acid (PLLA) with low crystalline poly-d-l-lactic acid (PLA) were prepared via Thermally Induced Phase Separation (TIPS), with the aim of exploring the possibility to control the degradation behaviour of the PLA-based scaffold, simultaneously preserving the morphological characteristics required for tissue engineering applications. Porous foams with different PLLA/PLA weight ratios (from 95/5 to 60/40) were produced and characterised in terms of pore size, porosity, and thermal properties. The scaffolds present an open porosity, with average pore sizes ranging from 30 to 70 μm. Results showed that, when dealing with a PLLA/PLA blend, some relevant processing conditions of the preparation process (above all demixing temperature and total polymer concentration) must be carefully tuned, in order to attain suitable structures in term of pore size and porosity. In particular, with increasing amounts of PLA in a PLLA/PLA blend, the demixing temperature must be decreased and the overall polymer concentration decreased. Moreover, a preliminary investigation regarding the in vitro biodegradation rate of the blends was attempted, based on the determination of the crystallinity through wide angle X-ray diffractometry.  相似文献   

17.
The aim of this study was to investigate physical and biological properties of collagen (COL) and demineralized bone powder (DBP) scaffolds for bone tissue engineering. DBP was prepared and divided into three groups, based on various particle sizes: 75–125 μm, 125–250 μm, and 250–500 μm. DBP was homogeneously mixed with type I collagen and three-dimensional scaffolds were constructed, applying chemical crosslinking and lyophilization. Upon culture with human periosteum-derived cells (PD cells), osteogenic differentiation of PD cells was investigated using alkaline phosphatase (ALP) activity and calcium assay kits. The physical properties of the COL/DBP scaffolds were obviously different from COL scaffolds, irrespective of the size of DBP. In addition, PD cells cultured with COL scaffolds showed significantly higher cell adhesion and proliferation than those with COL/DBP scaffolds. In contrast, COL/DBP scaffolds exhibited greater osteoinductive potential than COL scaffolds. The PD cells with COL/DBP scaffolds possessed higher ALP activity than those with COL scaffolds. PD cells cultured with COL/DBP scaffolds with 250–500 μm particle size yielded the maximum calcium deposition. In conclusion, PD cells cultured on the scaffolds could exhibit osteoinductive potential. The composite scaffold of COL/DBP with 250–500 μm particle size could be considered a potential bone tissue engineering implant.  相似文献   

18.
l-carnosine (β-alanyl-l-histidine) (Car hereafter) is a natural dipeptide widely distributed in mammalian tissues and reaching high concentrations (0.7–2.0 mM) in the brain. The molecular features of the dipeptide underlie the antioxidant, anti-aggregating and metal chelating ability showed in a large number of physiological effects, while the biological mechanisms involved in the protective role found against several diseases cannot be explained on the basis of the above-mentioned properties alone, requiring further research efforts. It has been reported that l-carnosine increases the secretion and expression of various neurotrophic factors and affects copper homeostasis in nervous cells inducing Cu cellular uptake in keeping with the key metal-sensing system. Having in mind this l-carnosine ability, here we report the copper-binding and ionophore ability of l-carnosine to activate tyrosine kinase cascade pathways in PC12 cells and stimulate the expression of BDNF. Furthermore, the study was extended to verify the ability of the dipeptide to favor copper signaling inducing the expression of VEGF. Being aware that the potential protective action of l-carnosine is drastically hampered by its hydrolysis, we also report on the behavior of a conjugate of l-carnosine with trehalose that blocks the carnosinase degradative activity. Overall, our findings describe a copper tuning effect on the ability of l-carnosine and, particularly its conjugate, to activate tyrosine kinase cascade pathways.  相似文献   

19.
A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 105 Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of →4)-α-d-Glcp-(1→4)-α-d-GalpA-(1→4)-α-d-Glcp-(1→4)-β-d-Glcp-(1→ units with poly saccharide side chains composed of →2)-β-d-Fruf-(1→2)-l-sorbose-(1→ attached to the O-6 position of the α-d-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-γ (IFN-γ), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity.  相似文献   

20.
Here, we report a biochemical characterization of recombinant maize indole-3-acetyl-β-d-glucose (IAGlc) synthase which glucosylates indole-3-acetic acid (IAA) and thus abolishes its auxinic activity affecting plant hormonal homeostasis. Substrate specificity analysis revealed that IAA is a preferred substrate of IAGlc synthase; however, the enzyme can also glucosylate indole-3-butyric acid and indole-3-propionic acid with the relative activity of 66% and 49.7%, respectively. KM values determined for IAA and UDP glucose are 0.8 and 0.7 mM, respectively. 2,4-Dichlorophenoxyacetic acid is a competitive inhibitor of the synthase and causes a 1.5-fold decrease in the enzyme affinity towards IAA, with the Ki value determined as 117 μM, while IAA–Asp acts as an activator of the synthase. Two sugar-phosphate compounds, ATP and glucose-1-phosphate, have a unique effect on the enzyme by acting as activators at low concentrations and showing inhibitory effect at higher concentrations (above 0.6 and 4 mM for ATP and glucose-1-phosphate, respectively). Results of molecular docking revealed that both compounds can bind to the PSPG (plant secondary product glycosyltransferase) motif of IAGlc synthase; however, there are also different potential binding sites present in the enzyme. We postulate that IAGlc synthase may contain more than one binding site for ATP and glucose-1-phosphate as reflected in its activity modulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号