首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alternating pyrolytic carbon/boron nitride (PyC/BN)n multilayer coatings were applied to the KD–II silicon carbide (SiC) fibres by chemical vapour deposition technique to fabricate continuous SiC fibre-reinforced SiC matrix (SiCf/SiC) composites with improved flexural strength and fracture toughness. Three-dimensional SiCf/SiC composites with different interfaces were fabricated by polymer infiltration and pyrolysis process. The microstructure of the coating was characterised by scanning electron microscopy, X–photoelectron spectroscopy and transmission electron microscopy. The interfacial shear strength was determined by the single-fibre push-out test. Single-edge notched beam (SENB) test and three-point bending test were used to evaluate the influence of multilayer interfaces on the mechanical properties of SiCf/SiC composites. The results indicated that the (PyC/BN)n multilayer interface led to optimum flexural strength and fracture toughness of 566.0?MPa and 21.5?MPa?m1/2, respectively, thus the fracture toughness of the composites was significantly improved.  相似文献   

2.
The effects of SiC coating and heat treatment on the emissivity were investigated for 2D C/SiC composites prepared by CVI in the 6–16 μm range. SiC coating had an obvious effect on the spectral emissivity of the composites but caused just 5% difference in the total emissivity. A radiation transport model was applied to explain those changes caused by SiC coating. Heat treatment affected the thermal radiation properties of the composites through the microstructure evolution. Base on the complementary analytical techniques, the changes in the emissivity were attributed to a good graphitization degree of carbon phases, large β-SiC grain sizes and high α-SiC content resulting in high emissivity.  相似文献   

3.
SiCf/SiC composites with silicon oxycarbide (SiOC) interphase were successfully prepared using silicone resin as interphase precursor for dip-coating process and polycarbosilane as matrix precursor for PIP process assisted with hot mold pressing. The effects of SiOC interphase on mechanical and dielectric properties were investigated. XRD and Raman spectrum results show that SiOC interphase is composed of silicon oxycarbide and free carbon with a relatively low crystalline degree. The surface morphology of SiC fibers with SiOC interphase is smooth and homogeneous observed by SEM. The flexural strength and failure displacement of SiCf/SiC composites with SiOC interphase vary with the thickness of interphase and the maximum value of flexural strength is 289 MPa with a failure displacement of 0.39 mm when the thickness of SiOC interphase is 0.25 µm. The complex permittivity of the composites increases from 8.8-i5.7 to 9.8-i8.3 with the interphase thicker.  相似文献   

4.
《应用陶瓷进展》2013,112(7):375-381
Abstract

Abstract

SiC fibre reinforced SiC–matrix ceramic composites were fabricated by electrophoretic deposition (EPD) combined with ultrasonication. Fine β-SiC powder and Tyranno-SA fabrics were used as the matrix and fibre for reinforcement, respectively. Different amounts of fine Al2O3–Y2O3 were added for liquid phase assisted sintering. For EPD, highly dispersed slurry was prepared by adjusting the zeta potentials of the constituent particles to ?+40 mV for homogeneous deposition. The composite properties were compared after using two different consolidation methods: hot pressing for 2 h at 20 MPa and spark plasma sintering (SPS) for 3 min at 45 MPa at 1750°C to minimise the damage to the SiC fibre. The maximum flexural strength and density for the 45 vol.-% fibre content composites were 482 MPa and 98% after hot pressing, respectively, whereas those for SPS were 561 MPa and 99·5%, indicating the effectiveness of SPS.  相似文献   

5.
The boron nitride (BN) interphase of silicon nitride (Si3N4) fiber-reinforced BN matrix (Si3N4f/BN) composites was prepared by chemical vapor deposition (CVD) of liquid borazine, and the microstructure, growth kinetics and crystallinity of the BN coating were examined. The effects of coating thickness on the mechanical strength and fiber/matrix interfacial bonding strength of the composites were then investigated. The CVD BN coating plays a key role in weakening the interfacial bonding condition that improves the mechanical properties of the composites. The layering structure of the BN coating promotes crack propagation within the coating, which leads to a variety of toughening mechanisms including crack deflection, fiber bridging and fiber pull out. Single-fiber push-out experiments were performed to quantify the fiber/matrix bonding strength with different coating thicknesses. The physical bonding strength due to thermal mismatch was discussed.  相似文献   

6.
The fabrication of three-dimensional silicon nitride (Si3N4) fiber-reinforced silicon nitride matrix (3D Si3N4f/BN/Si3N4) composites with a boron nitride (BN) interphase through precursor infiltration and pyrolysis (PIP) process was reported. Heat treatment at 1000–1200 °C was used to analyze the thermal stability of the Si3N4f/BN/Si3N4 composites. It was found after heat treatment the flexural strength and fracture toughness change with a pattern that decrease first and then increase, which are 191 ± 13 MPa and 5.8 ± 0.5 MPa·m1/2 respectively for as-fabricated composites, and reach the minimum values of 138 ± 6 MPa and 3.9 ± 0.4 MPa·m1/2 respectively for composites annealed at 1100 °C. The influence mechanisms of the heat treatment on the Si3N4f/BN/Si3N4 composites include: (Ⅰ) matrix shrinkage by further ceramization that causes defects such as pores and cracks in composites, and (Ⅱ) prestress relaxation, thermal residual stress (TRS) redistribution and a better wetting at the fiber/matrix (F/M) surface that increase the interfacial bonding strength (IBS). Thus, heat treatment affects the mechanical properties of composites by changing the properties of the matrix and IBS, where the load transfer efficiency onto the fibers is fluctuating by the microstructural evolution of matrix and gradually increasing IBS.  相似文献   

7.
The SiC fibers were coated with Ti3SiC2 interphase by dip-coating. The Ti3SiC2 coated fibers were heat-treated from 900 °C to 1100 °C in vacuum and argon atmospheres to comparatively analyze the effect of temperature and atmosphere on the microstructural evolution and mechanical strength of the fibers. The results show that the surface morphology of Ti3SiC2 coating is rough in vacuum and Ti3SiC2 is decomposed at 1100 °C. However, in argon atmosphere, the surface morphology is smooth and Ti3SiC2 is oxidized at 1000 °C and 1100 °C. At 1100 °C, Ti3SiC2 oxidized to form a thin layer of amorphous SiO2 embedded with TiO2 grains. Meanwhile, defects and pores appeared in the interphase scale. As a result, the fiber strength treated in the argon was lower than that treated in vacuum. The porous Ti3SiC2 interphase fabricated under vacuum was then employed to prepare the SiCf/SiC mini composite by chemical vapor infiltration (CVI) combined with precursor infiltration pyrolysis (PIP), and can effectively improve the toughness of SiCf/SiC mini composite. The propagating cracks can be deflected within the porous interphase layer, which promotes fiber pull-outs under the tensile strength.  相似文献   

8.
The effects of heat treatment on the mechanical properties of plain-woven SiC/SiC composites at 927 °C and 1200 °C in argon were evaluated through tensile tests at room temperature and at elevated temperature on the as-received and heat-treated plain-woven SiC/SiC composites, respectively. Heat treatment can improve the mechanical properties of composites at room temperature due to the release of thermal residual stress. Although heat treatment can damage the fiber, the effect of this damage on the mechanical properties of composites is generally less than the effect of thermal residual stress. Heat treatment will graphitize the pyrolytic carbon interface and reduce its shear strength. Testing temperature will affect the expansion or contraction of the components in the composites, thereby changing the stress state of the components. This study can provide guidance for the optimization of processing of ceramic matrix composites and the structural design in high-temperature environments.  相似文献   

9.
Traditionally, SiC components with complex shapes are very difficult or even impossible to fabricate. This paper aims to develop a new manufacturing process, combining selective laser sintering (SLS), cold isostatic pressing (CIP) and polymer infiltration pyrolysis (PIP), to manufacture complex silicon carbide parts and improve the mechanical properties of silicon carbide ceramic parts. The density and porosity of SiC/SiC composites were measured. Furthermore, the mechanical properties of the specimens with cold isostatic pressing and the specimens without cold isostatic pressing were compared. The bending strength of the specimens with cold isostatic pressing was 201?MPa, and the elastic modulus was 1.27?GPa. And, the bending strength of the specimens without cold isostatic pressing was 142?MPa, and the elastic modulus was 0.88?GPa. Increasing the density of SiC/SiC can enhance the mechanical properties of SiC/SiC composites.  相似文献   

10.
Two-dimensional (2D) carbon fiber reinforced silicon carbide (C/SiC) composites with different initial strength were prepared by chemical vapor infiltration (CVI). After tensile property testing, results exhibited that as the heat-treatment temperature (HTT) increases to 1900°C, the tensile strength and toughness of the low strength specimen (LSS) increased by 110% and 530%, while the high strength specimen (HSS) increased by 5.4% and 550%, respectively. As observed from morphologies, the heat treatment increases the graphitization of the amorphous PyC interphase, which leads to the weakening of interfacial bonding strength (IBS). Meanwhile, the defects arising from heat treatment cause thermal residual stress relaxation. Therefore, the tensile strength and toughness of LSS with relatively high initial IBS increase significantly as HTT increases. For HSS with moderate initial IBS, the heat treatment slightly improves the tensile strength, but significantly improves the toughness. Consequently, the post-heat-treatment tensile properties of 2D C/SiC composites can be regulated by varying HTTs and different initial strength.  相似文献   

11.
BN-nanoparticle-containing SiC-matrix-based composites comprising SiC fibers and lacking a fiber/matrix interface (SiC/BN + SiC composites) were fabricated by spark plasma sintering (SPS) at 1800°C for 10 min under 50 MPa in Ar. The content of added BN nanoparticles was varied from 0 to 50 vol.%. The mechanical properties of the SiC/BN + SiC composites were investigated thoroughly. The SiC/BN + SiC composites with a BN nanoparticle content of 50 vol.%, which had a bulk density of 2.73 g/cm3 and an open porosity of 5.8%, exhibited quasiductile fracture behavior, as indicated by a short nonlinear region and significantly shorter fiber pullouts owing to the relatively high modulus. The composites also exhibited high strength as well as bending, proportional limit stress, and ultimate tensile strength values of 496 ± 13, 251 ± 30, and 301 MPa ± 56 MPa, respectively, under ambient conditions. The SiC fibers with contents of BN nanoparticles above 30 vol.% were not severely damaged during SPS and adhered to the matrix to form a relatively weak fiber/matrix interface.  相似文献   

12.
In order to improve the mechanical properties, vertically aligned carbon nanotubes (VACNTs) were in situ introduced on the pyrocarbon (PyC) interfaces of the multilayer preform via chemical vapor deposition (CVD) process under tailored parameters. Chemical vapor infiltration (CVI) process was then employed to densify the multilayer preform to acquire SiC/SiC composites. The results show that the growth of VACNTs on PyC interface is highly dependent to the deposition temperature, time and constituent of gas during CVD process. The preferred orientation and high graphitization of VACNTs were obtained when temperature is 800?℃ and C2H4/H2 ratio is 1:3. The bending strength and fracture toughness of SiC/SiC composites with PyC and PyC-VACNTs interfaces were compared. Compared to the SiC/SiC composite with PyC interface, the bending strength and fracture toughness increase 1.298 and 1.359 times, respectively after the introduction of PyC-VACNTs interface to the SiC/SiC composites. It is also demonstrated that the modification of PyC interface with VACNTs enhances the mechanical properties of SiC/SiC composites due to the occurrence of more fiber pull-outs, interfacial debonding, crack branching and deflection  相似文献   

13.
ABSTRACT

A simple wet papermaking technique was used to fabricate chopped carbon fibre paper (Csf-paper) with random fibre orientation and self-supporting network structures in this work. The Csf-papers were laminated layer by layer and further infiltrated with PyC interface and SiC matrix via chemical vapour infiltration (CVI) to obtain Csf/SiC composites. The effects of heat treatment temperatures on microstructures, phase composition, and mechanical properties were investigated. Results showed that the Csf-paper has played a good self-supporting role and its fibres form a completely random fibre orientation in 2D plane. The fibres almost remained undamaged and unbroken during the CVI. Proper heat treatment could improve the mechanical properties. At 1200°C, the maximum values of flexural strength and Young's modulus reached about 306 MPa and 196.5 GPa, respectively. Meanwhile, compared with tape casting, reaction sintering and spark plasma sintering, composites fabricated by wet papermaking and CVI can improve the mechanical properties.  相似文献   

14.
This article reported a novel method for preparing diamond/SiC composites by tape-casting and chemical vapor infiltration (CVI) process, and the advantages of this method were discussed. The diamond particle was proved to be thermally stable under CVI conditions and the CVI diamond/SiC composites only contained diamond and CVI-SiC phases. The SEM and TEM results showed a strong interfacial bonding existed between diamond and CVI-SiC matrix. Due to the strong bonding, the surface HRA hardness could reach up to 98.4 (HV 50 ± 5 GPa) and the thermal conductivity (TC) of composites was five times higher than that of pure CVI-SiC matrix. Additionally, the effects of diamond particle size on microstructure and properties of composites were also investigated. With the increasing of particle size, the density and TC of composites with the size 27 μm reached 2.940 g/cm3 and 82 W/(m K), respectively.  相似文献   

15.
In this study, SiC nanowires (SiCNWS) were grown in situ on the surface of PyC interface through chemical vapor infiltration (CVI) to improve the mechanical characteristics and thermal conductivity of three-dimensional SiCf/SiC composites fabricated via precursor infiltration pyrolysis (PIP). The effect of SiCNWS on the properties of the obtained composites was investigated by comparing them with conventional SiCf/PyC/SiC composites. After the deposition of SiCNWS, the flexural strength of the SiCf/SiC composites was found to increase by 46 %, and the thermal conductivity showed an obvious increase at 25?1000 °C. The energy release of the composites in the damage evolution process was analysed by acoustic emission. The results indicated that the damage evolution process was delayed owing to the decrease in porosity, the crack deflection and bridging of the SiCNWS. Furthermore, the excellent thermal conductivity was attributed to the thermally conductive pathways formed by the SiCNWS in the dense structure.  相似文献   

16.
《Ceramics International》2020,46(2):1297-1306
Three types of SiCf/SiC composites with a four-step three-dimensional SiC fibre preform and pyrocarbon interface fabricated via precursor infiltration and pyrolysis at 1100 °C, 1300 °C, and 1500 °C were heat-treated at 1300 °C under argon atmosphere for 50 h. The effects of the pyrolysis temperature on the microstructural and mechanical properties of the SiCf/SiC composites were studied. With an increase in the pyrolysis temperature, the SiC crystallite size of the as-fabricated composites increased from 3.4 to 6.4 nm, and the flexural strength decreased from 742 ± 45 to 467 ± 38 MPa. After heat treatment, all the samples exhibited lower mechanical properties, accompanied by grain growth, mass loss, and the formation of open pores. The degree of mechanical degradation decreased with an increase in the pyrolysis temperature. The composites fabricated at 1500 °C exhibited the highest property retention rates with 90% flexural strength and 98% flexural modulus retained. The mechanism of the mechanical evolution after heat treatment was revealed, which suggested that the thermal stability of the mechanical properties is enhanced by the high crystallinity of the SiC matrix after pyrolysis at higher temperatures.  相似文献   

17.
C/C-SiC composites were fabricated by a combined process of chemical vapor deposition (CVD), slurry infiltration(SI), and precursor infiltration and pyrolysis (PIP). The microstructure and mechanical behavior were investigated for the dense C/C-SiC composites before and after high-temperature heat treatment. The results indicated that the sintering of the SiC matrix and the migration of the SiC matrix/fiber bundles weak interface occurred after high-temperature heat treatment at 1900 ℃. The SiC sintering resulted in an increase in the flexural strength of the C/C-SiC composites from 298.9 ± 35.0 MPa to 411.1 ± 57.3 MPa. The migration of the weak interface changed the direction of crack propagation, making the fracture toughness of the C/C-SiC composites decrease from 13.3 ± 1.7 MPa⋅m 1/2 to 9.02 ± 1.5 MPa⋅m 1/2.  相似文献   

18.
Hexagonal-shaped SiC nanowires were in situ formed in C/SiC composites with ferrocene as catalyst in the densification process of polymer impregnation and pyrolysis. The effect of SiC nanowires on microstructure and properties of the composites were studied. The results show that the in situ formed SiC nanowires were hexagonal, mostly with diamer of about 250 nm, and grew by the vapor–liquid–solid (VLS) mechanism. The C/SiC composite with nanowires shows higher bulk density and flexural strength than the one with no SiC nanowires, and the high temperature flexural strength behavior of C/SiC composites with SiC nanowires was evaluated.  相似文献   

19.
《Ceramics International》2019,45(10):13046-13051
The concept of diffusion-assisting holes (DAHs) has been developed to increase matrix deposition in the middle layers of the thick-section ceramic matrix composites (CMCs) that are fabricated by chemical vapor infiltration (CVI). However, the effect of DAHs on the tensile properties of CMCs has not been studied. Here, the tensile properties and the state of matrix deposition of a 10-mm-thick two dimensional (2D) C/SiC with DAHs are investigated. Results showed, with DAHs, a zone of increased deposition with a radius of ca. 1.4 mm around a hole was introduced and the net-section strength of the 10-mm-thick 2D C/SiC was increased by 48.1%. In addition, the tensile load bearing capacity was also increased by 34.1%, although the load bearing section decreased with DAHs. The increased net-section strength and tensile load bearing capacity of the C/SiC are attributed to the increased matrix deposition in the middle layers of the thick-section composite.  相似文献   

20.
C/SiBCN composites with a density of 1.64 g/cm3 were prepared via precursor infiltration and pyrolysis and the bending strength and modulus at room temperature was 305 MPa and 53.5 GPa. The precursor derived SiBCN ceramics showed good thermal stability at 1600 °C and the SiC and Si3N4 crystals appeared above 1700 °C. The bending strength of the composites was 180 MPa after heat treatment at 1500 °C, and maintained at 40 MPa-50 MPa after heat treatment for 2 h at 1600 °C–1900 °C. In C/SiBCN composites, SiBCN matrix could retain amorphous up to 1500 °C and SiC grains appeared at 1600 °C but without Si3N4. The reason for no detection of Si3N4 was that the carbon fiber reacted with Si3N4 to form an interface layer (composed of SiC and unreacted C) and a polycrystalline transition layer (composed of B and C elements), leading to the degradation of the mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号