首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective passivation and stabilization of both the inside and interface of a perovskite layer are crucial for perovskite solar cells (PSCs), in terms of efficiency, reproducibility, and stability. Here, the first formamidinium lead iodide (δ‐FAPbI3) polymorph passivated and stabilized MAPbI3 PSCs are reported. This novel MAPbI3/δ‐FAPbI3 structure is realized via treating a mixed organic cation MA x FA1‐ x PbI3 perovskite film with methylamine (MA) gas. In addition to the morphology healing, MA gas can also induce the formation of δ‐FAPbI3 phase within the perovskite film. The in situ formed 1D δ‐FAPbI3 polymorph behaves like an organic scaffold that can passivate the trap state, tunnel contact, and restrict organic‐cation diffusion. As a result, the device efficiency is easily boosted to 21%. Furthermore, the stability of the MAPbI3/δ‐FAPbI3 film is also obviously improved. This δ‐FAPbI3 phase passivation strategy opens up a new direction of perovskite structure modification for further improving stability without sacrificing efficiency.  相似文献   

2.
All‐inorganic CsPbIBr2 perovskite has recently received growing attention due to its balanced band gap and excellent environmental stability. However, the requirement of high‐temperature processing limits its application in flexible devices. Herein, a low‐temperature seed‐assisted growth (SAG) method for high‐quality CsPbIBr2 perovskite films through reducing the crystallization temperature by introducing methylammonium halides (MAX, X = I, Br, Cl) is demonstrated. The mechanism is attributed to MA cation based perovskite seeds, which act as nuclei lowering the formation energy of CsPbIBr2 during the annealing treatment. It is found that methylammonium bromide treated perovskite (Pvsk‐Br) film fabricated at low temperature (150 °C) shows micrometer‐sized grains and superior charge dynamic properties, delivering a device with an efficiency of 10.47%. Furthermore, an efficiency of 11.1% is achieved for a device based on high‐temperature (250 °C) processed Pvsk‐Br film via the SAG method, which presents the highest reported efficiency for inorganic CsPbIBr2 solar cells thus far.  相似文献   

3.
Solution‐processed perovskite (PSC) solar cells have achieved extremely high power conversion efficiencies (PCEs) over 20%, but practical application of this photovoltaic technology requires further advancements on both long‐term stability and large‐area device demonstration. Here, an additive‐engineering strategy is developed to realize a facile and convenient fabrication method of large‐area uniform perovskite films composed of large crystal size and low density of defects. The high crystalline quality of the perovskite is found to simultaneously enhance the PCE and the durability of PSCs. By using the simple and widely used methylammonium lead iodide (MAPbI3), a certified PCE of 19.19% is achieved for devices with an aperture area of 1.025 cm2, and the high‐performing devices can sustain over 80% of the initial PCE after 500 h of thermal aging at 85 °C, which are among the best results of MAPbI3‐based PSCs so far.  相似文献   

4.
The influence of precursor solution properties, fabrication environment, and antisolvent properties on the microstructural evolution of perovskite films is reported. First, the impact of fabrication environment on the morphology of methyl ammonium lead iodide (MAPbI3) perovskite films with various Lewis‐base additives is reported. Second, the influence of antisolvent properties on perovskite film microstructure is investigated using antisolvents ranging from nonpolar heptane to highly polar water. This study shows an ambient environment that accelerates crystal growth at the expense of nucleation and introduces anisotropies in crystal morphology. The use of antisolvents enhances nucleation but also influences ambient moisture interaction with the precursor solution, resulting in different crystal morphology (shape, size, dispersity) in different antisolvents. Crystal morphology, in turn, dictates film quality. A homogenous spherulitic crystallization results in pinhole‐free films with similar microstructure irrespective of processing environment. This study further demonstrates propyl acetate, an environmentally benign antisolvent, which can induce spherulitic crystallization under ambient environment (52% relative humidity, 25 °C). With this, planar perovskite solar cells with ≈17.78% stabilized power conversion efficiency are achieved. Finally, a simple precipitation test and in situ crystallization imaging under an optical microscope that can enable a facile a priori screening of antisolvents is shown.  相似文献   

5.
The additive engineering strategy promotes the efficiency of solution-processed perovskite solar cells (PSCs) over 25%. However, compositional heterogeneity and structural disorders occur in perovskite films with the addition of specific additives, making it imperative to understand the detrimental impact of additives on film quality and device performance. In this work, the double-edged sword effects of the methylammonium chloride (MACl) additive on the properties of methylammonium lead mixed-halide perovskite (MAPbI3-xClx ) films and PSCs are demonstrated. MAPbI3-xClx films suffer from undesirable morphology transition during annealing, and its impacts on the film quality including morphology, optical properties, structure, and defect evolution are systematically investigated, as well as the power conversion efficiency (PCE) evolution for related PSCs. The FAX (FA = formamidinium, X = I, Br, and Ac) post-treatment strategy is developed to inhibit the morphology transition and suppress defects by compensating for the loss of the organic components, a champion PCE of 21.49% with an impressive open-circuit voltage of 1.17 V is obtained, and remains over 95% of the initial efficiency after storing over 1200 hours. This study elucidates that understanding the additive-induced detrimental effects in halide perovskites is critical to achieve the efficient and stable PSCs.  相似文献   

6.
Metal halide perovskite solar cells (PSCs) have advanced to the forefront of solution‐processed photovoltaic techniques and made stunning progress in power conversion efficiency (PCE). Further improvements in device performances rely on perfecting the structure and morphology of perovskite films. However, undesirable defects such as pinholes and grain boundaries are often created in film preparations due to lack of knowledge of the precise reaction mechanism. Here, in situ grazing‐incidence X‐ray diffraction (GI‐XRD) investigations are performed, facilitated by other techniques, on the formation of the widely adopted MAPbI3 (MA = methylammonium) perovskite films from their intermediate adduct (IA) phases. The influences of solvent vapor atmospheres on MAPbI3 films are also systematically investigated, where the dynamic conversion processes between different phases are visualized in real time. Further in situ GI‐XRD and infrared spectroscopy measurements reveal that the IA phases contain both N,N‐dimethylformamide and dimethyl sulfoxide (DMSO) as coordinating molecules. By tuning the DMSO concentration in perovskite precursors, the ideal perovskite film is formed and the best PCE is achieved for the planar MAPbI3‐based PSCs. These findings highlight the role of IA phases and the effect of solvent atmospheres on the quality of perovskite films, providing direct insights into their growth mechanism.  相似文献   

7.
《Materials Letters》2004,58(7-8):1387-1391
Ba0.7Sr0.3TiO3 (BST) films were produced on metal substrate using electrophoretic deposition (EPD) followed by high temperature sintering. The composition, crystal structure and microstructure of the deposited films were characterised using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The sintered BST films showed a sharp perovskite structure with uniform microstructure. The results indicated that a typical BST film of 20 μm thick after sintering for 2–10 h exhibited the relative dielectric constant ranging from 3100 to 5100 at 20 °C and dissipation factor of 0.061–0.118 at 1 kHz. The density, crystallinity, microstructural uniformity and dielectric properties of the BST films reached their best values after 8 h annealing at 1350 °C. These films also possess excellent adhesion to the substrate.  相似文献   

8.
The fabrication of multidimensional organometallic halide perovskite via a low‐pressure vapor‐assisted solution process is demonstrated for the first time. Phenyl ethyl‐ammonium iodide (PEAI)‐doped lead iodide (PbI2) is first spin‐coated onto the substrate and subsequently reacts with methyl‐ammonium iodide (MAI) vapor in a low‐pressure heating oven. The doping ratio of PEAI in MAI‐vapor‐treated perovskite has significant impact on the crystalline structure, surface morphology, grain size, UV–vis absorption and photoluminescence spectra, and the resultant device performance. Multiple photoluminescence spectra are observed in the perovskite film starting with high PEAI/PbI2 ratio, which suggests the coexistence of low‐dimensional perovskite (PEA2MAn?1PbnI3n+1) with various values of n after vapor reaction. The dimensionality of the as‐fabricated perovskite film reveals an evolution from 2D, hybrid 2D/3D to 3D structure when the doping level of PEAI/PbI2 ratio varies from 2 to 0. Scanning electron microscopy images and Kelvin probe force microscopy mapping show that the PEAI‐containing perovskite grain is presumably formed around the MAPbI3 perovskite grain to benefit MAPbI3 grain growth. The device employing perovskite with PEAI/PbI2 = 0.05 achieves a champion power conversion efficiency of 19.10% with an open‐circuit voltage of 1.08 V, a current density of 21.91 mA cm?2, and a remarkable fill factor of 80.36%.  相似文献   

9.
Perovskite solar cells (PSCs) have emerged as one of the most promising and competitive photovoltaic technologies, and doctor-blading is a facile and robust deposition technique to efficiently fabricate PSCs in large scale, especially matching with roll-to-roll process. Herein, it demonstrates the encouraging results of one-step, antisolvent-free doctor-bladed methylammonium lead iodide (CH3NH3PbI3, MAPbI3) PSCs under a wide range of humidity from 45% to 82%. A synergy strategy of ionic-liquid methylammonium acetate (MAAc) and molecular phenylurea additives is developed to modulate the morphology and crystallization process of MAPbI3 perovskite film, leading to high-quality MAPbI3 perovskite film with large-size crystal, low defect density, and ultrasmooth surface. Impressive power conversion efficiency (PCE) of 20.34% is achieved for doctor-bladed PSCs under the humidity over 80% with a device structure of ITO/SnO2/MAPbI3/Spiro-OMeTAD/Ag. It is the highest PCEs for one-step solution-processed MAPbI3 PSCs without antisolvent assistance. The research provides a facile and robust large-scale deposition technique to fabricate highly efficient and stable PSCs under a wide range of humidity, even with the humidity over 80%.  相似文献   

10.
A scalable and low-cost deposition of high-quality charge transport layers and photoactive perovskite layers are the grand challenges for large-area and efficient perovskite solar modules and tandem cells. An inverted structure with an inorganic hole transport layer is expected for long-term stability. Among various hole transport materials, nickel oxide has been investigated for highly efficient and stable perovskite solar cells. However, the reported deposition methods are either difficult for large-scale conformal deposition or require a high vacuum process. Chemical bath deposition is supposed to realize a uniform, conformal, and scalable coating by a solution process. However, the conventional chemical bath deposition requires a high annealing temperature of over 400 °C. In this work, an amino-alcohol ligand-based controllable release and deposition of NiOX using chemical bath deposition with a low calcining temperature of 270 °C is developed. The uniform and conformal in-situ growth precursive films can be adjusted by tuning the ligand structure. The inverted structured perovskite solar cells and large-area solar modules reached a champion PCE of 22.03% and 19.03%, respectively. This study paves an efficient, low-temperature, and scalable chemical bath deposition route for large-area NiOX thin films for the scalable fabrication of highly efficient perovskite solar modules.  相似文献   

11.
In hybrid organic–inorganic lead halide perovskite solar cells, the energy loss is strongly associated with nonradiative recombination in the perovskite layer and at the cell interfaces. Here, a simple but effective strategy is developed to improve the cell performance of perovskite solar cells via the combination of internal doping by a ferroelectric polymer and external control by an electric field. A group of polarized ferroelectric (PFE) polymers are doped into the methylammonium lead iodide (MAPbI3) layer and/or inserted between the perovskite and the hole‐transporting layers to enhance the build‐in field (BIF), improve the crystallization of MAPbI3, and regulate the nonradiative recombination in perovskite solar cells. The PFE polymer‐doped MAPbI3 shows an orderly arrangement of MA+ cations, resulting in a preferred growth orientation of polycrystalline perovskite films with reduced trap states. In addition, the BIF is enhanced by the widened depletion region in the device. As an interfacial dipole layer, the PFE polymer plays a critical role in increasing the BIF. This combined effect leads to a substantial reduction in voltage loss of 0.14 V due to the efficient suppression of nonradiative recombination. Consequently, the resulting perovskite solar cells present a power conversion efficiency of 21.38% with a high open‐circuit voltage of 1.14 V.  相似文献   

12.
Halide perovskite films processed from solution at low‐temperature offer promising opportunities to make flexible solar cells. However, the brittleness of perovskite films is an issue for mechanical stability in flexible devices. Herein, photo‐crosslinked [6,6]‐phenylC61‐butyric oxetane dendron ester (C‐PCBOD) is used to improve the mechanical stability of methylammonium lead iodide (MAPbI3) perovskite films. Also, it is demonstrated that C‐PCBOD passivates the grain boundaries, which reduces the formation of trap states and enhances the environmental stability of MAPbI3. Thus, MAPbI3 perovskite solar cells are prepared on solid and flexible substrates with record efficiencies of 20.4% and 18.1%, respectively, which are among the highest ever reported for MAPbI3 on both flexible and solid substrates. The result of this work provides a step improvement toward stable and efficient flexible perovskite solar cells.  相似文献   

13.
In this work, solar cells based on methylammonium lead iodide (MAPbI3) doped in solution with C70 fullerene in a mesoporous as well as planar electron‐transporting layer (ETL)‐free architecture are realized, showcasing in the latter case a record efficiency of 15.7% and an improved open‐circuit voltage (VOC). Contrary to the bulk heterojunction previously reported, the C70 molecules do not phase segregate and they are rather finely dispersed in the perovskite film, possibly infiltrating at the grain boundaries, while assisting the growth of a highly uniform perovskite layer. By means of time‐resolved femtosecond‐to‐nanosecond optical spectroscopy, with an extended spectral coverage, it is observed that electrons photogenerated in the perovskite are transferred to C70 with a time constant of 20 ps. Despite being captured by C70, electrons are not deeply trapped and can potentially bounce back into the perovskite, as suggested by the high fill factor and enhanced VOC of the MAPbI3:C70 solar cells, especially in the case of the ETL‐free device configuration.  相似文献   

14.
Longer carrier diffusion length and improved power conversion efficiency have been reported for thin‐film solar cell of organolead mixed‐halide perovskite MAPbI3– x Cl x in comparison with MAPbI3. Instead of substituting I in the MAPbI3 lattice, Cl‐incorporation has been shown to mainly improve the film morphology of perovskite absorber. Well‐defined crystal structure, adjustable composition (x), and regular morphology, remains a formidable task. Herein, a facile solution‐assembly method is reported for synthesizing single‐crystalline nanofibers (NFs) of tetragonal‐lattice MAPbI3– x Cl x with the Cl‐content adjustable between 0 ≤ x ≤ 0.75, leading to a gradual blueshift of the absorption and photoluminescence maxima from x = 0 to 0.75. The photoresponsivity (R) of MAPbI3 NFs keeps almost unchanging at a value independent of the white‐light illumination intensity (P). In contrast, R of MAPbI3– x Cl x NFs decreases rapidly with increasing both the x and P values, indicating Cl‐substitution increases the recombination traps of photogenerated free electrons and holes. This study provides a model system to examine the role of extrinsic Cl ions in both perovskite crystallography and optoelectronic properties.  相似文献   

15.
In this study, a facile and effective approach to synthesize high‐quality perovskite‐quantum dots (QDs) hybrid film is demonstrated, which dramatically improves the photovoltaic performance of a perovskite solar cell (PSC). Adding PbS QDs into CH3NH3PbI3 (MAPbI3) precursor to form a QD‐in‐perovskite structure is found to be beneficial for the crystallization of perovskite, revealed by enlarged grain size, reduced fragmentized grains, enhanced characteristic peak intensity, and large percentage of (220) plane in X‐ray diffraction patterns. The hybrid film also shows higher carrier mobility, as evidenced by Hall Effect measurement. By taking all these advantages, the PSC based on MAPbI3‐PbS hybrid film leads to an improvement in power conversion efficiency by 14% compared to that based on pure perovskite, primarily ascribed to higher current density and fill factor (FF). Ultimately, an efficiency reaching up to 18.6% and a FF of over ≈0.77 are achieved based on the PSC with hybrid film. Such a simple hybridizing technique opens up a promising method to improve the performance of PSCs, and has strong potential to be applied to prepare other hybrid composite materials.  相似文献   

16.
Highly c-axis textured MgO thin films were grown directly on Si(100) substrates without any buffer layer by RF magnetron sputtering for use as growth template of ferroelectric film. We fixed the target-to-substrate spacing of 40 mm and then changed the substrate temperature, deposition pressure, and RF power to study the effect of deposition parameters on the growth of c-axis textured MgO thin films. The as-grown films were post-annealed by the rapid thermal annealing (RTA) and furnace annealing to improve the film quality. The experimental results show that the optimum deposition parameters are substrate temperature of 350 °C, oxygen pressure of 15 mTorr and RF power of 75 W. The full width at half maximum intensity (FWHM) of MgO(200) peak obtained from the XRD measurement was 0.8°, and it was further reduced to 0.5° and 0.27° after annealing by RTA and furnace, respectively. Highly c-axis textured PZT and BaTiO3 films could be obtained on this template. Hysteresis loops of the BaTiO3 films deposited on MgO(100) single crystalline substrate and MgO(200)/Si(100) template were measured for comparison. The results show that MgO/Si templates thus obtained are suitable for the synthesis of perovskite ferroelectric thin films.  相似文献   

17.
Mesoporous TiO2 nanoparticle (NP) films are broadly used as electrodes in photoelectrochemical cells, dye‐sensitized solar cells (DSSCs), and perovskite solar cells (PSCs). State‐of‐the‐art mesoporous TiO2 NP films for these solar cells are fabricated by annealing TiO2 paste‐coated fluorine‐doped tin oxide glass in a box furnace at 500 °C for ≈30 min. Here, the use of a nontraditional reactor, i.e., flame, is reported for the high throughput and ultrafast annealing of TiO2 paste (≈1 min). This flame‐annealing method, compared to conventional furnace annealing, exhibits three distinct benefits. First, flame removes polymeric binders in the initial TiO2 paste more completely because of its high temperature (≈1000 °C). Second, flame induces strong interconnections between TiO2 nanoparticles without affecting the underlying transparent conducting oxide substrate. Third, the flame‐induced carbothermic reduction on the TiO2 surface facilitates charge injection from the dye/perovskite to TiO2. Consequently, when the flame‐annealed mesoporous TiO2 film is used to fabricate DSSCs and PSCs, both exhibit enhanced charge transport and higher power conversion efficiencies than those fabricated using furnace‐annealed TiO2 films. Finally, when the ultrafast flame‐annealing method is combined with a fast dye‐coating method to fabricate DSSC devices, its total fabrication time is reduced from over 3 h to ≈10 min.  相似文献   

18.
Mixed perovskites have achieved substantial successes in boosting solar cell efficiency, but the complicated perovskite crystal formation pathway remains mysterious. Here, the detailed crystallization process of mixed perovskites (FA0.83MA0.17Pb(I0.83Br0.17)3) during spin‐coating is revealed by in situ grazing‐incidence wide‐angle X‐ray scattering measurements, and three phase‐formation stages are identified: I) precursor solution; II) hexagonal δ‐phase (2H); and III) complex phases including hexagonal polytypes (4H, 6H), MAI–PbI2–DMSO intermediate phases, and perovskite α‐phase. The correlated device performance and ex situ characterizations suggest the existence of an “annealing window” covering the duration of stage II. The spin‐coated film should be annealed within the annealing window to avoid the formation of hexagonal polytypes during the perovskite crystallization process, thus achieving a good device performance. Remarkably, the crystallization pathway can be manipulated by incorporating Cs+ ions in mixed perovskites. Combined with density functional theory calculations, the perovskite system with sufficient Cs+ will bypass the formation of secondary phases in stage III by promoting the formation of α‐phase both kinetically and thermodynamically, thereby significantly extending the annealing window. This study provides underlying reasons of the time sensitivity of fabricating mixed‐perovskite devices and insightful guidelines for manipulating the perovskite crystallization pathways toward higher performance.  相似文献   

19.
It is of great importance to investigate the crystallization of organometallic perovskite from solution for enhancing performance of perovskite solar cells. Here, this study develops a facile method for in situ observation of crystallization and growth of the methylammonium lead iodide (MAPbI3) perovskite from microdroplets ejected by an alternating viscous and inertial force jetting method. It is found that there are two crystallization modes when MAPbI3 grows from the CH3NH3I (MAI)/PbI2/N,N‐dimethylformamide (DMF) solution: needle precursors and granular perovskites. Generally, needle Lewis adduct of MAPbI3·DMF tends to nucleate and grow from the solution due to low solubility of PbI2. The growth of MAPbI3·DMF depends on both the concentration of MAI and temperature. It tends to form large perovskite domains on substrates at high temperature. The MAPbI3·DMF coverts to nanocrystalline perovskite due to lattice shrinkage when DMF molecules escape from the Lewis adduct. Granular perovskite can also directly nucleate from the solution at high concentration of MAI due to compositional segregation.  相似文献   

20.
Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI3) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley–Read–Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO2 cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI3 and TiO2 surfaces by HS occurs through the interactions of the functional groups (? COO?, ? SO3?, or Na+) in HS with undersaturated Pb and I ions in MAPbI3 and Ti4+ in TiO2. This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high‐performance and stable perovskite solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号