首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
武汉军山长江大桥在服役17年后,桥面板出现了严重的疲劳开裂问题,难以修补,为此提出一种钢桥面板不修补,上铺带横向钢板条的UHPC桥面加固方案。以军山长江大桥为研究背景,应用子模型技术对比计算了钢面板重度开裂时纯钢梁和加固后钢面板的应力状态;制作了双层钢筋网+UHPC的传统轻型组合桥面结构与钢板条+UHPC及三层钢筋网+UHPC两类新型加固结构,开展了横向抗弯静力试验及疲劳试验。研究结果表明:采用UHPC加固技术后,正交异性钢桥面的疲劳应力大幅度下降,其中钢面板-U肋焊趾处的横向拉应力沿纵、横桥向的分布降幅达78.8%~86.4%;UHPC拉应力方面,由于钢面板不修补,UHPC层下缘拉应力高达12.9MPa,UHPC层下缘布置80mm宽间距200mm的钢板条后,其底面名义开裂应力可达43.2MPa,远高于设计拉应力,钢板条+UHPC的钢桥面加固方案经过应力幅22MPa的1000万次疲劳试验,UHPC层具备800万次疲劳寿命(裂缝宽度小于0.05mm),且刚度无折减,因此可作为永久结构层与重度开裂的钢桥面构成轻型组合桥面结构,经UHPC加固后,原钢桥面的疲劳裂缝有望不再发展。  相似文献   

2.
为探明钢-超薄UHPC (Ultra-high Performance Concrete)-TPO (Thin Polymer Overlay)组合桥面基本力学性能,设计5块钢-超薄UHPC-TPO组合板进行抗弯静力试验及疲劳试验。静力试验结果表明:在负弯矩作用下,UHPC层的开裂强度为22.1~24.3MPa;TPO先于UHPC进入非线性阶段。疲劳试验结果表明:若将此方案应用于虎门大桥悬索桥,则UHPC层在设计应力幅下疲劳开裂寿命可达925.7万次,TPO层将不会因疲劳而开裂;疲劳加载后,组合板剩余弯拉强度均值为26.9kN,整体抗弯刚度与静力试验结果相比仅下降13%。研究表明,钢桥面-超薄UHPC-TPO组合桥面具有优良的抗弯拉性能。  相似文献   

3.
为降低正交异性钢桥面板疲劳开裂的风险,提出带球扁钢纵肋的轻型组合桥面板方案。以洞庭湖二桥轻型组合桥面板为工程背景,建立钢桁梁局部有限元模型和球扁纵肋-横隔板连接细节的子模型,并基于热点应力法,对横隔板上开孔孔型和厚度进行了参数分析。研究表明:球扁纵肋-横隔板连接处3个典型疲劳细节的疲劳性能受横隔板厚度影响显著|综合比较,苹果型开孔的疲劳性能最优。为进一步验证轻型组合桥面板的球扁钢纵肋-横隔板连接处3个细节的疲劳性能,开展了足尺模型疲劳试验,试验模型采用16mm厚带苹果型开孔的横隔板设计。疲劳试验中,控制细节(横隔板切口自由边缘)的应力幅为90.6MPa,历经250万次循环加载后,试验模型中典型疲劳细节均未出现疲劳裂纹。这表明,带球扁钢纵肋的轻型组合桥面板关键细节的疲劳性能良好,能满足洞庭湖二桥的工程要求。  相似文献   

4.
文章采用有限元方法分析了钢桥面板纵肋-横隔板连接四个典型构造细节在有无UHPC铺装情况下的轮载应力响应,并对比UHPC铺装层对其疲劳性能的提升效果。研究结果表明,在无刚性铺装情况下,构造细节H、HD、LS和LZ的最不利应力分别为-82.1 MPa、28.3 MPa、43.3 MPa和-42.9 MPa;在采用50 mm厚UHPC铺装后,构造细节H、HD、LS和LZ的最不利应力分别下降为-45.6 MPa、13.0 MPa、14.7 MPa和-12.0 MPa;UHPC铺装层对钢桥面板纵肋-横隔板连接各构造细节的疲劳性能提升明显,其中构造细节LZ的疲劳寿命提升高达45.4倍。  相似文献   

5.
以洞庭湖二桥闭口肋轻型组合桥面板为对象,研究了焊接疲劳开裂细节,并引入热点应力法计算得到其应力幅值。对比分析后发现,与横梁相关的疲劳细节仍然有较高的应力幅值。针对国内外规范中典型横梁闭口肋开孔形式以及不同横梁厚度,开展有限元分析,从而进一步优化各疲劳细节的受力状态。数值分析结果表明:与传统钢桥面板相比,闭口肋轻型组合桥面板能大大降低各典型疲劳细节的应力幅值,降幅可达23.2%~86.1%|Eourcode3规范推荐的铁路桥梁孔型较优|横梁厚度的变化能大大改善横梁处相关疲劳细节的应力水平。足尺模型疲劳试验表明,洞庭湖二桥横梁圆弧过渡处疲劳细节强度满足设计要求|通过对STC层与钢顶板之间三种不同黏结方式的分析表明,界面黏结性的增强能改善轻型组合结构的受力性能。  相似文献   

6.
钢桥面板纵肋与顶板焊接细节是疲劳开裂最为严重的部位之一,为探究UHPC层对纵肋与顶板焊接细节的加固效果,文章采用数值模拟的方法分别研究了引入UHPC层前后不同尺寸裂纹关注点的应力强度因子幅值,研究结果表明:起裂于顶板焊根及顶板焊趾往顶板厚度方向扩展的疲劳裂纹均为I型为主的疲劳裂纹,其中,焊根裂纹较焊趾裂纹具有更强的扩展能力;采用UHPC层加固后,各尺寸疲劳裂纹关注点应力强度因子幅值ΔK_(eff)降幅均在50%以上,表明该加固方法能够较为有效地抑制疲劳裂纹的扩展;当表面裂纹长度较短时,可以不做处理,但当焊趾裂纹超过42 mm,焊根裂纹34 mm,应结合其他加固方式进行加固处理。  相似文献   

7.
为提升纵肋与横隔板构造细节的疲劳性能,将横隔板在一定区域范围内与纵肋底板进行焊接连接,加强两者的协同受力,进而改善其疲劳性能,在此基础上发展了两种纵肋与横隔板新型构造细节并对其疲劳性能进行系统研究。结果表明:在纵向移动荷载作用下,纵肋与横隔板普通开孔构造细节的主导疲劳开裂模式为纵肋腹板围焊焊趾开裂并沿纵肋腹板扩展且以承受拉-拉循环应力为主;两种纵肋与横隔板新型构造细节的主导疲劳开裂模式均以承受压-压循环应力为主,其中以新型构造细节1的受力最为合理,其主导疲劳开裂模式为纵肋底板围焊端部焊趾开裂并沿纵肋底板扩展,相较于纵肋与横隔板普通开孔构造细节,其应力幅值降低约12.4%,疲劳性能得到有效提升。  相似文献   

8.
正交异性钢桥面板的疲劳问题属于包含多疲劳破坏模式的结构体系疲劳问题。基于这一本质特性,以典型的正交异性钢桥面板结构体系为研究对象,由结构体系的主导疲劳破坏模式出发,提出正交异性钢桥面板结构体系疲劳抗力评估的新方法。以纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节为主要研究对象,设计8个足尺节段模型,主要包括传统纵肋与顶板焊接细节、新型镦边纵肋与顶板焊接细节和纵肋与横隔板交叉构造细节,通过模型试验研究了两类重要构造细节的主导疲劳破坏模式和实际疲劳抗力,在此基础上结合切口应力评估方法探讨正交异性钢桥面板构造细节切口应力S-N曲线方程、结构体系的主导疲劳破坏模式等关键问题。研究结果表明:传统纵肋与顶板焊接细节和新型镦边纵肋与顶板焊接细节的主导疲劳破坏模式均为疲劳裂纹萌生于焊根并沿顶板厚度方向扩展,二者的实际疲劳抗力基本相同;纵肋与横隔板交叉构造细节的疲劳破坏模式为焊趾开裂沿纵肋腹板方向扩展;对于研究对象而言,萌生于纵肋与顶板焊接细节焊根并沿顶板厚度方向扩展的疲劳破坏模式为控制结构体系疲劳抗力的主导疲劳破坏模式。  相似文献   

9.
文章以某公轨两用斜拉桥为研究对象,采用Abaqus建立有限元模型进行了8类不同疲劳细节的应力幅影响因素分析。分析了STC桥面铺装参与和不参与钢桥面板共同受力时各个疲劳细节的横向、纵向主拉应力幅值以及剪应力幅值的变化情况,同时还对一般位置横隔板板厚由16 mm增大到24 mm、节点位置横隔板厚度由20 mm增大到24 mm时各个构造细节的主拉应力、剪应力幅值进行了对比。结果表明:当考虑STC参与桥面板共同受力时,各个疲劳细节应力幅呈现减小趋势,主拉应力幅最大降幅11%,剪应力幅最大降幅13%;且横隔板厚度增大后,主拉应力幅最大降幅18%,剪应力幅最大降幅6.5%,可为同类桥梁的钢桥面板疲劳应力幅计算研究提供一定参考。  相似文献   

10.
《工业建筑》2017,(5):6-11
依托泰州大桥,建立钢桥面板节段有限元模型,在考虑不同荷载工况组合的情况下,通过施加车轮荷载,研究顶板与U肋连接细节、U肋对接细节和U肋与横隔板连接细节的变形,同时分析3种典型细节的疲劳应力分布情况。研究表明:顶板与U肋连接细节接头处顶板底部横桥向应力约为顺桥向应力的2倍;车轮荷载顺桥向位置的改变是引起U肋对接细节承受拉压交替应力的主要原因;U肋与横隔板细节的面外变形由荷载顺桥向偏心作用及U肋变形约束引起。  相似文献   

11.
以含U型肋的钢-薄层超高性能混凝土(UHPC)轻型组合桥面结构为对象,开展了稀疏栓钉布置下的组合桥面三点弯曲疲劳试验,研究了栓钉抗剪和薄层UHPC抗弯拉、疲劳性能,并进行了剩余强度试验.疲劳试验结果表明,累计经历3200万次疲劳加载后,UHPC顶面的最大裂缝宽度仅为0.05 mm,且钢-薄层UHPC界面未见显著滑移.剩...  相似文献   

12.
冯亚成  王春生 《钢结构》2011,26(2):27-30,63
正交异性钢桥面板由于具有自重轻、极限承载力大等优点目前广泛应用于大、中跨径桥梁中,我国已建和在建的大跨径桥梁也大多采用正交异性钢桥面板.但由于正交异性钢桥面板结构构造复杂,受焊接残余应力影响大,钢桥面板直接位于车轮荷载的作用下,一些构造细节处极易发生疲劳开裂.以国内某大桥正交异性钢桥面板为例,针对纵肋与桥面板之间的疲劳...  相似文献   

13.
《钢结构》2016,(11)
为研究组合桥面板的疲劳性能,开展随机车流作用下佛陈扩建桥几个构造细节的应力监测,获得构造细节的应力记录;确定对应的等效应力幅和加载次数,进行构造细节的疲劳性能评价。分析表明:纵肋-面板构造细节和弧形切口构造细节在随机车流作用下的最大和等效应力低于常幅疲劳极限,疲劳性能满足无限寿命设计要求。  相似文献   

14.
文章主要内容是对纵肋顶板焊接细节在不同参数组合情况下疲劳开裂对焊趾附近应力下降影响进行分析。纵肋顶板焊接细节是钢桥面板中占比较大的疲劳易损细节,且一旦疲劳开裂对结构影响较大,因此对此焊接细节进行深入的研究具有重大的工程实际意义。通过监测焊趾附近关注测点应力变化可以预测结构裂纹的发展情况,但是不同结构参数组合下变化情况可能存在差异。通过建立纵肋顶板疲劳细节的试件试验的有限元模型,通过提取中心离焊趾5 mm处测点的应力,对比不同参数下焊趾关键测点的应力下降随裂纹扩展的变化规律。通过对比发现,当取不同熔透率时,焊趾关键测点应力下降随裂纹扩展规律基本一致;取相同熔透率时,增加顶板厚度会延缓关键测点应力下降随裂纹扩展的过程。  相似文献   

15.
根据国内外钢箱梁的设计经验,选取3种不同的横隔板优化结构形式,通过有限元方法建立钢桥面板的空间有限元模型,计算U肋与横隔板连接焊缝末端和横隔板弧形缺口2种构造细节在车轮荷载作用下的应力幅值,得出不同横隔板优化结构形式对横隔板弧形缺口部位疲劳应力的影响。研究结果表明:设置横隔板间小横肋可有效降低两处构造细节的应力幅,但该优化结构对横隔板弧形缺口细节的影响较U肋与横隔板连接焊缝末端细节小;设置内隔板后两处构造细节的应力幅均有所下降,其中采用内隔板上缘距桥面板顶板20 mm、下缘距U肋与横隔板焊接末端20 mm的设计形式效果最佳;设置弧形缺口加劲肋对焊缝末端和弧形缺口两处构造细节的应力幅均有较大影响,减小了构造细节发生疲劳开裂的可能性。  相似文献   

16.
《钢结构》2016,(11)
为研究正交异性钢桥面板横隔板无外切口大尺寸U肋-顶板焊接构造细节的疲劳性能,建立有限元模型,计算得到该构造细节在轮载作用下的应力随轮载位置变化的规律和相应应力幅,并与传统尺寸正交异性钢桥面板的受力情况进行对比。研究表明:大尺寸U肋正交异性钢桥面板的应力影响线较长,受力性能与传统正交异性钢桥面板有差别;当轮载作用在U肋上方面板的面积越多时,构造细节的应力越大;构造细节面板处的面外弯曲应力较大,而U肋腹板处的面外应力很小。  相似文献   

17.
为解决钢-超薄UHPC轻型组合桥面板由于UHPC层过薄而难以采用常规剪力连接件的问题,提出一种新型剪力连接件 短钢筋连接件。通过静力推出试验以及疲劳推出试验对短钢筋连接件的抗剪性能进行初步研究。静力推出试验结果表明:①该试验存在焊缝剪断和UHPC局部破坏(短钢筋拔出)两种破坏模式;②短钢筋连接件承载力随着焊缝长度增加而提高;③短钢筋连接件抗剪承载力高于栓钉,略低于钢筋网焊接件。疲劳推出试验结果表明:80MPa剪应力幅下,3个试件疲劳寿命分别为194.2、271.0、195.8万次,去掉最大值,剩余两者平均疲劳寿命为195万次,略低于规范相应的200万次。通过Miner-Palmgren线性累积损伤理论对不同应力幅下的疲劳次数转化,可得200万次疲劳下的剪应力幅为79.6MPa。仿真结果表明:在纵横向间距200mm×200mm布置方式下,两类疲劳细节(连接件位置与钢顶板位置)均能够满足抗剪疲劳设计要求。文章研究成果可为今后实桥应用提供理论依据。  相似文献   

18.
曾志斌 《钢结构》2013,28(4):20-24
正交异性钢桥面板的疲劳裂纹是既有钢桥的常见病害,其维修加固难于新桥建设,必须遵守耐久性等基本原则。钢桥面板的维修加固方法分为三类:第一类是改进铺装层结构,减小整个钢桥面板所有部位的应力;第二类是局部补强或者改进纵向加劲肋的构造;第三类是直接对发生疲劳裂纹的局部进行维修。如果疲劳裂纹比较严重,如纵向加劲肋与横肋之间的连接失效、或者纵向加劲肋与面板的连接焊缝处裂纹向上贯穿面板等,则需要同时采用第一类和第三类加固方法。  相似文献   

19.
迟啸起  张海芳 《山西建筑》2012,(22):179-180
对某大桥正交异性钢桥面板的纵肋—面板焊接接头进行了热点应力法实体单元有限元分析,通过ABAQUS的模拟分析结果表明,轮压对于正交异性板钢桥面板的应力影响范围很小,对纵肋—面板焊接接头的应力提升不明显,接头非线性应力分布在距离焊趾0.4t的范围内,应力分布特点与以往针对平板焊接结构的热点应力研究成果相吻合。  相似文献   

20.
<正>交异性钢桥面板承受着车辆动荷载的反复作用,容易造成疲劳累计损伤,出现钢桥面板的疲劳开裂现象。为研究某城市桥梁钢桥面板的疲劳寿命,建立钢桥面板三维有限元模型,选取钢桥面板4种典型的疲劳细节,确定最不利加载方式,并根据实测得到的城市车辆荷载频值谱,计算相应的应力历程和应力谱,从而评估各个疲劳细节的疲劳寿命。结果表明:在城市车辆荷载频值谱作用下,某城市钢桥4种疲劳细节的最大应力幅值均小于常幅疲劳极限,即钢桥面板具有无限寿命。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号