首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 650 毫秒
1.
A feature‐oriented generic progressive lossless mesh coder (FOLProM) is proposed to encode triangular meshes with arbitrarily complex geometry and topology. In this work, a sequence of levels of detail (LODs) are generated through iterative vertex set split and bounding volume subdivision. The incremental geometry and connectivity updates associated with each vertex set split and/or bounding volume subdivision are entropy coded. Due to the visual importance of sharp geometric features, the whole geometry coding process is optimized for a better presentation of geometric features, especially at low coding bitrates. Feature‐oriented optimization in FOLProM is performed in hierarchy control and adaptive quantization. Efficient coordinate representation and prediction schemes are employed to reduce the entropy of data significantly. Furthermore, a simple yet efficient connectivity coding scheme is proposed. It is shown that FOLProM offers a significant rate‐distortion (R‐D) gain over the prior art, which is especially obvious at low bitrates.  相似文献   

2.
We present a method for analytically calculating an anti‐aliased rasterization of arbitrary polygons or fonts bounded by Bézier curves in 2D as well as oriented triangle meshes in 3D. Our algorithm rasterizes multiple resolutions simultaneously using a hierarchical wavelet representation and is robust to degenerate inputs. We show that using the simplest wavelet, the Haar basis, is equivalent to performing a box‐filter to the rasterized image. Because we evaluate wavelet coefficients through line integrals in 2D, we are able to derive analytic solutions for polygons that have Bézier curve boundaries of any order, and we provide solutions for quadratic and cubic curves. In 3D, we compute the wavelet coefficients through analytic surface integrals over triangle meshes and show how to do so in a computationally efficient manner.  相似文献   

3.
The signed distance field for a polygonal model is a useful representation that facilitates efficient computation in many visualization and geometric processing tasks. Often it is more effective to build a local distance field only within a narrow band around the surface that holds local geometric information for the model. In this paper, we present a novel technique to construct a volumetric local signed distance field of a polygonal model. To compute the local field efficiently, exactly those cells that cross the polygonal surface are found first through a new voxelization method, building a list of intersecting triangles for each boundary cell. After their neighboring cells are classified, the triangle lists are exploited to compute the local signed distance field with minimized voxel‐to‐triangle distance computations. While several efficient methods for computing the distance field, particularly those harnessing the graphics processing unit's (GPU's) processing power, have recently been proposed, we focus on a CPU‐based technique, intended to deal flexibly with large polygonal models and high‐resolution grids that are often too bulky for GPU computation.  相似文献   

4.
Laplacian mesh compression, also known as high‐pass mesh coding, is a popular technique for efficiently storing both static and dynamic triangle meshes that gained further recognition with the advent of perceptual mesh distortion evaluation metrics. Currently, the usual rule of thumb that drives the decision for a mesh compression algorithm is whether or not accuracy in absolute scale is required: Laplacian mesh encoding is chosen when perceptual quality is the main objective, while other techniques provide better results in terms of mechanistic error measures such as mean squared error. In this work, we present a modification of the Laplacian mesh encoding algorithm that preserves its benefits while it substantially reduces the resulting absolute error. Our approach is based on analyzing the reconstruction stage and modifying the quantization of differential coordinates, so that the decoded result stays close to the input even in areas that are distant from anchor points. In our approach, we avoid solving an overdetermined system of linear equations and thus reduce data redundancy, improve conditioning and achieve faster processing. Our approach can be directly applied to both static and dynamic mesh compression and we provide quantitative results comparing our approach with the state of the art methods.  相似文献   

5.
Abstract— The increasing demand for multimedia over networks and the heterogeneous nature of today's networks and playback devices impose the stringent need for scalable video coding. In this context, in‐band wavelet‐based video‐coding architectures offer full scalability in terms of quality, resolution, and frame‐rate and provide compression performance competitive with that of state‐of‐the‐art non‐scalable technology. Despite these advances, video streaming over wireless networks to handheld terminals is lagging in popularity due to the high power consumption of the existing portable devices. As a possible approach to alleviate this problem, the integration of wavelet‐based passive‐matrix‐display driving into the inverse discrete wavelet transform (IDWT) block of the in‐band video decoding architecture was investigated. In a nutshell, the IDWT no longer needs to be performed by the decoder, being synthesized instead by the display itself. This integration reduces the number of calculations required to generate the driving waveforms for passive‐matrix displays and inherently leads to reduced power consumption on portable terminals. Moreover, the wavelet transform and the considered video‐codec architecture are both resolution‐scalable. Hence, the resolution‐scalability feature of the video codec, enabling resolution‐scalable display driving, is another means to control the power consumption of the portable device.  相似文献   

6.
Anti‐aliasing has recently been employed as a post‐processing step to adapt to the deferred shading technique in real‐time applications. Some of these existing algorithms store supersampling geometric information as geometric buffer (G‐buffer) to detect and alleviate sub‐pixel‐level aliasing artifacts. However, the anti‐aliasing filter based on sampled sub‐pixel geometries only may introduce unfaithful shading information to the sub‐pixel color in uniform‐geometry regions, and large G‐buffer will increase memory storage and fetch overheads. In this paper, we present a new Triangle‐based Geometry Anti‐Aliasing (TGAA) algorithm, to address these problems. The coverage triangle of each screen pixel is accessed, and then, the coverage information between the triangle and neighboring sub‐pixels is stored in a screen‐resolution bitmask, which allows the geometric information to be stored and accessed in an inexpensive manner. Using triangle‐based geometry, TGAA can exclude irrelevant neighboring shading samples and achieve faithful anti‐aliasing filtering. In addition, a morphological method of estimating the geometric edges in high‐frequency geometry is incorporated into the TGAA's anti‐aliasing filter to complement the algorithm. The implementation results demonstrate that the algorithm is efficient and scalable for generating high‐quality anti‐aliased images.  相似文献   

7.
Accurate simulation of all the senses in virtual environments is a computationally expensive task. Visual saliency models have been used to improve computational performance for rendered content, but this is insufficient for multi‐modal environments. This paper considers cross‐modal perception and, in particular, if and how olfaction affects visual attention. Two experiments are presented in this paper. Firstly, eye tracking is gathered from a number of participants to gain an impression about where and how they view virtual objects when smell is introduced compared to an odourless condition. Based on the results of this experiment a new type of saliency map in a selective‐rendering pipeline is presented. A second experiment validates this approach, and demonstrates that participants rank images as better quality, when compared to a reference, for the same rendering budget.  相似文献   

8.
Multiresolution meshes provide an efficient and structured representation of geometric objects. To increase the mesh resolution only at vital parts of the object, adaptive refinement is widely used. We propose a lossless compression scheme for these adaptive structures that exploits the parent–child relationships inherent to the mesh hierarchy. We use the rules that correspond to the adaptive refinement scheme and store bits only where some freedom of choice is left, leading to compact codes that are free of redundancy. Moreover, we extend the coder to sequences of meshes with varying refinement. The connectivity compression ratio of our method exceeds that of state‐of‐the‐art coders by a factor of 2–7. For efficient compression of vertex positions we adapt popular wavelet‐based coding schemes to the adaptive triangular and quadrangular cases to demonstrate the compatibility with our method. Akin to state‐of‐the‐art coders, we use a zerotree to encode the resulting coefficients. Using improved context modelling we enhanced the zerotree compression, cutting the overall geometry data rate by 7% below those of the successful Progressive Geometry Compression. More importantly, by exploiting the existing refinement structure we achieve compression factors that are four times greater than those of coders which can handle irregular meshes.  相似文献   

9.
We present a novel image resizing method which attempts to ensure that important local regions undergo a geometric similarity transformation, and at the same time, to preserve image edge structure. To accomplish this, we define handles to describe both local regions and image edges, and assign a weight for each handle based on an importance map for the source image. Inspired by conformal energy, which is widely used in geometry processing, we construct a novel quadratic distortion energy to measure the shape distortion for each handle. The resizing result is obtained by minimizing the weighted sum of the quadratic distortion energies of all handles. Compared to previous methods, our method allows distortion to be diffused better in all directions, and important image edges are well‐preserved. The method is efficient, and offers a closed form solution.  相似文献   

10.
We present an Eulerian method for the real‐time simulation of intrinsic fluid dynamics effects on deforming surfaces. Our method is based on a novel semi‐Lagrangian closest point method for the solution of partial differential equations on animated triangle meshes. We describe this method and demonstrate its use to compute and visualize flow and wave propagation along such meshes at high resolution and speed. Underlying our technique is the efficient conversion of an animated triangle mesh into a time‐dependent implicit representation based on closest surface points. The proposed technique is unconditionally stable with respect to the surface deformation and, in contrast to comparable Lagrangian techniques, its precision does not depend on the level of detail of the surface triangulation.  相似文献   

11.
Rendering vector maps is a key challenge for high‐quality geographic visualization systems. In this paper, we present a novel approach to visualize vector maps over detailed terrain models in a pixel‐precise way. Our method proposes a deferred line rendering technique to display vector maps directly in a screen‐space shading stage over the 3D terrain visualization. Due to the absence of traditional geometric polygonal rendering, our algorithm is able to outperform conventional vector map rendering algorithms for geographic information systems, and supports advanced line anti‐aliasing as well as slope distortion correction. Furthermore, our deferred line rendering enables interactively customizable advanced vector styling methods as well as a tool for interactive pixel‐based editing operations.  相似文献   

12.
13.
Given a cross field over a triangulated surface we present a practical and robust method to compute a field aligned coarse quad layout over the surface. The method works directly on a triangle mesh without requiring any parametrization and it is based on a new technique for tracing field‐coherent geodesic paths directly on a triangle mesh, and on a new relaxed formulation of a binary LP problem, which allows us to extract both conforming quad layouts and coarser layouts containing t‐junctions. Our method is easy to implement, very robust, and, being directly based on the input cross field, it is able to generate better aligned layouts, even with complicated fields containing many singularities. We show results on a number of datasets and comparisons with state‐of‐the‐art methods.  相似文献   

14.
图像配准在遥感图像处理,计算机视觉,模式识别,医学图像处理等领域有着广泛的应用。配准的目的就是将同一场景的不同图像对齐或匹配,消除:配准的目的就是将同一场景的不同图像对齐或匹配,消除存在的几何畸变。介绍一种基于移动向量估计的图像配准技术,它利用复小波变换相对传统小波的一些优点,如位移不变性、多方向选择性,对移动向量进行估计。实验结果表明,使用这种方法对消除几何畸变有很好的效果。  相似文献   

15.
We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a volume distortion criterion. The result is a point‐to‐point map distorting linear cells into curved ones. Our method is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher‐order finite element formulation of the deformation energy. This allows us to globally optimize the mapping without prior parameterization. The anisotropic VSDM formulation allows for sharp and semi‐sharp features to be implicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to the geometric details. This makes both the method more efficient and the representation more compact. We apply our method to geometric modeling applications in computer‐aided design and computer graphics, including mixed‐element meshing, mesh optimization, subdivision volume fitting, and shell meshing.  相似文献   

16.
为了取得较好的三角形网格压缩性能,提出了一种基于小波变换的三角形网格非渐进压缩方法。该压缩方法先利用重新网格化来去除大部分连接信息,然后利用小波变换的强去相关能力来压缩几何信息。在进行重新网格化和小波变换后,再按一个确定的次序将所有的小波系数扫描为一个序列,然后对其做量化和算术编码。另外,对重新网格化得到的自适应半正规采样模式,还设计了一种自适应细分信息编码算法,以便使解码端知道每一个小波系数应该放置在哪一个顶点上。实验表明,用该压缩方法对由三维扫描仪获取的复杂网格进行压缩,取得了比Edgebreaker方法明显要好的率失真性能;10比特量化时,压缩倍数在200倍左右,为Edgebreaker方法的2倍多。  相似文献   

17.
基于小波变换的ROI图像压缩改进算法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
小波变换作为一种多分辨率分析方法,具有良好的空频局部特性,特别适合按照人类视觉系统特性设计图像压缩编码方案。基于小波变换的嵌入式编码算法能够有效地应用于基于感兴趣区域(ROI)的图像压缩与渐进传输。为了进一步提高效率并改善图像压缩传输的效果,本文在该算法的基础上提出了两点改进:(1)计算感兴趣区域模板时,将数学上的"排列组合"思想应用于传统的回溯法,使计算过程更加简单;(2)在对小波系数嵌入式编码时,牺牲图像背景区域的细节系数以获取感兴趣区域更高的解码质量。最后给出了改进算法的部分实验结果,证明了改进算法的有效性。  相似文献   

18.
We propose a novel, multi‐resolution method to efficiently perform large‐scale cloth simulation. Our cloth simulation method is based on a triangle‐based energy model constructed from a cloth mesh. We identify that solutions of the linear system of cloth simulation are smooth in certain regions of the cloth mesh and solve the linear system on those regions in a reduced solution space. Then we reconstruct the original solutions by performing a simple interpolation from solutions computed in the reduced space. In order to identify regions where solutions are smooth, we propose simplification metrics that consider stretching, shear, and bending forces, as well as geometric collisions. Our multi‐resolution method can be applied to many existing cloth simulation methods, since our method works on a general linear system. In order to demonstrate benefits of our method, we apply our method into four large‐scale cloth benchmarks that consist of tens or hundreds of thousands of triangles. Because of the reduced computations, we achieve a performance improvement by a factor of up to one order of magnitude, with a little loss of simulation quality.  相似文献   

19.
We propose a new adaptive algorithm for determining virtual point lights (VPL) in the scope of real‐time instant radiosity methods, which use a limited number of VPLs. The proposed method is based on Metropolis‐Hastings sampling and exhibits better temporal coherence of VPLs, which is particularly important for real‐time applications dealing with dynamic scenes. We evaluate the properties of the proposed method in the context of the algorithm based on imperfect shadow maps and compare it with the commonly used inverse transform method. The results indicate that the proposed technique can significantly reduce the temporal flickering artifacts even for scenes with complex materials and textures. Further, we propose a novel splatting scheme for imperfect shadow maps using hardware tessellation. This scheme significantly improves the rendering performance particularly for complex and deformable scenes. We thoroughly analyze the performance of the proposed techniques on test scenes with detailed materials, moving camera, and deforming geometry.  相似文献   

20.
We present an image processing method that converts a raster image to a simplical two‐complex which has only a small number of vertices (base mesh) plus a parametrization that maps each pixel in the original image to a combination of the barycentric coordinates of the triangle it is finally mapped into. Such a conversion of a raster image into a base mesh plus parametrization can be useful for many applications such as segmentation, image retargeting, multi‐resolution editing with arbitrary topologies, edge preserving smoothing, compression, etc. The goal of the algorithm is to produce a base mesh such that it has a small colour distortion as well as high shape fairness, and a parametrization that is globally continuous visually and numerically. Inspired by multi‐resolution adaptive parametrization of surfaces and quadric error metric, the algorithm converts pixels in the image to a dense triangle mesh and performs error‐bounded simplification jointly considering geometry and colour. The eliminated vertices are projected to an existing face. The implementation is iterative and stops when it reaches a prescribed error threshold. The algorithm is feature‐sensitive, i.e. salient feature edges in the images are preserved where possible and it takes colour into account thereby producing a better quality triangulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号