首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
以共价键或离子键结合的脆性单晶、多晶和光学玻璃是能源、通信、交通和医疗领域新兴微电子和光电器件的核心材料。为满足高性能器件的制造需求,脆性材料通常需要经过磨削、研磨、抛光等超精密磨粒加工,获得具有原子级光滑的表面、近无损伤的亚表面和微米甚至纳米级的加工精度。优化磨粒加工工艺不仅可以有效地提高加工效率,降低制造成本,还能够延长脆性材料元器件的服役寿命,但开发高效率、低损伤超精密磨粒加工技术需深入理解脆性材料纳米尺度的去除机理。本文基于划擦力学原理,揭示脆性材料纳米尺度磨粒加工去除的本质,阐明磨粒加工过程中脆性材料脆性–塑性转变去除的基本原理,概述单磨粒纳米划擦脆性材料的形变和去除机制,以及磨粒加工过程中脆性材料的去除机理及材料微观结构对其局部变形及后续去除的影响规律,提出实现脆性材料高效延性加工的控制策略,有助于推动脆性材料超精密磨粒加工技术的进一步发展。   相似文献   

2.
为研究加工工艺参数对纳米切削单晶γ-TiAl合金表面质量和亚表层损伤的影响机理,以分子动力学(molecular dynamics, MD)为基础理论,采用非刚性金刚石刀具建立三维纳米切削模型,通过研究切屑体积、表面粗糙度、静水压分布、位错密度、位错演化、相变原子数,详细分析不同切削速度和切削深度对表面和亚表面结构的影响。结果发现:随着切削速度的增加,切屑体积增大,加工效率提升,且存在切削速度为100 m/s的临界值。表面粗糙度先减小后增大,同样存在切削速度为100 m/s的临界值。位错的复杂程度降低,位错密度减小,塑性变形程度增加;随着切削深度的增加,切屑体积增大,加工效率提升,表面粗糙度、位错密度以及塑性变形程度显著增加。在切削过程中,发现位错主要分布在刀具前方和下方,在刀具前方45°方向存在V形位错和梯杆位错以及位错间的相互反应,且切削完成后残留下空位和原子团簇等稳定缺陷。   相似文献   

3.
磨料射流表面抛光研究综述   总被引:6,自引:5,他引:1  
陈逢军  唐宇  苗想亮  尹韶辉 《表面技术》2015,44(11):119-127
作为精密超精密光学制造工艺过程中的一个重要环节,各种新型表面抛光方法与工艺始终吸引着科研人员不断深入研究与探索。磨料射流抛光方法为小型复杂零件的表面抛光提供了一个新思路,成为精密超精密光学加工技术的重要组成部分。对磨料射流表面抛光过程中衍生的磨料水射流抛光、磁射流抛光、负压吸流抛光、磨料气射流抛光、冰粒水射流抛光、纳米胶体射流抛光的抛光原理、方法及特点进行了综述,分析了各射流表面抛光技术材料去除的最新发展;从加工原理、磨料选择、抛光精度、数学模型等方面对上述新型射流抛光技术进行深入分析与比较,其中磁射流抛光、纳米胶体射流抛光、磨料水射流抛光的抛光精度较高,可以实现表面粗糙度纳米级的超精密抛光,而磨料气射流抛光、冰粒射流抛光从加工成本上来讲则相对较低。最后,对磨料射流表面抛光在去除函数优化、精度效率的提高、应用范围扩展、在线检测、商业化应用等方面的发展趋势进行了预测。  相似文献   

4.
利用分子动力学模拟了纳米Si O2颗粒与单晶硅(100)表面的碰撞过程,以此来分析纳米胶体射流抛光的材料去除机理。仿真结果显示:粒径为7 nm的Si O2颗粒其速度在50 m/s时,与单晶硅工件表面的碰撞作用不会引起工件表面的原子排布的变化;而若要使碰撞对单晶硅工件表面原子排布产生影响,纳米Si O2颗粒的速度需大于250 m/s。以单晶硅工件为加工对象进行了纳米胶体射流抛光加工试验。利用激光拉曼光谱对加工前后单晶硅工件表面原子排布状况进行了比较,其结果与分子动力学仿真结果吻合。利用X射线光电子能谱,研究了加工前后纳米Si O2颗粒与单晶硅工件表面原子之间化学键的变化。通过仿真和试验得出:纳米胶体射流抛光中,纳米颗粒碰撞所产生的机械作用不能直接去除工件材料,材料的去除是纳米颗粒与工件表面之间机械作用和化学作用的共同结果。  相似文献   

5.
针对传统磁力研磨对小直径钛合金管内表面进行精密抛光时,研磨效率低、加工后表面质量不理想的问题,提出将多个球形磁极作为辅助抛光工具放置在管件内部,配合多种运动,完成对小直径钛合金管内表面的高效精密抛光。对比了添加不同辅助抛光工具后工件的表面粗糙度值和材料去除量的变化,分析了工件转速对研磨效果的影响。对4×150mm的TC4钛合金管进行精密抛光实验,实验结果表明:工件转速为20000r/min时的研磨效果最好,使用球形磁极研磨40min后,工件表面粗糙度值稳定至Ra0.2μm,材料去除量可达55mg,原始缺陷被去除;使用球形磁极作为辅助抛光工具时,研磨效率显著提升,且能够获得理想的表面质量;当工件转速不超过临界值时,工件的转速越高,研磨效果越好。  相似文献   

6.
氮化铝材料具有较高的热导率和良好的介电性能,机械强度高,热膨胀系数与半导体硅材料相近,非常适于制造大功率或快速半导体器件的散热基片和封装材料。本文采用游离磨料加工方法对氮化铝基片表面进行了研磨、抛光,讨论了不同加工参数对试件表面粗糙度和材料去除率的影响。采用表面粗糙度仪和厚度仪分别对超精密加工后AIN基片的表面粗糙度及去除厚度进行了测量。实验结果表明,在本实验条件下可以获得表面粗糙度Ra为8nm的超光滑表面。实验还采用XJZ-5型电子显微镜对加工过程中AIN的表面结构进行了观察,分析了不同超精密加工阶段的材料去除机理,同时发现晶粒间孔隙会降低AIN基片的可加工性能。  相似文献   

7.
为解决TC4钛合金表面材料的定量去除问题,提高TC4钛合金磁粒研磨光整加工的效率,采用电化学脱合金法对不同浓度的Na OH溶液进行分析,得出最佳电解液浓度为1.5 mol/L;利用动电位和恒电位极化确定脱合金临界电压为2.1 V。在1.5 mol/L NaOH溶液中,2.1 V电压下进行脱合金试验,TC4钛合金表面获得连续均匀的纳米多孔结构。脱合金3、6、9 h后,工件表面纳米多孔层的维氏硬度分别降低29.4%、39.5%、46.7%。摩擦磨损试验中,磨球穿透纳米多孔层的时间分别为11、21、35 min,纳米多孔层厚度分别达到2.2、3.8和6.2μm。对TC4钛合金和脱合金工件进行磁粒研磨光整加工,研磨加工165 min后,TC4钛合金表面6.2μm厚度的磨痕得到有效去除;研磨加工45 min后,脱合金工件表面6.2μm厚度的纳米多孔层被有效去除,研磨效率提升72.7%。使用脱合金-磁粒研磨复合加工的方法,实现了TC4钛合金表面材料的定量去除,而且降低了表面材料的维氏硬度,提高了磁粒研磨的加工效率。  相似文献   

8.
磁流变抛光技术的研究进展   总被引:1,自引:1,他引:0  
王嘉琪  肖强 《表面技术》2019,48(10):317-328
磁流变抛光技术具有加工面形精度高、表面粗糙度小、加工过程易于控制、表面损伤小、加工过程中不产生新的损伤等优秀特点,因此多应用于加工要求高的精密和超精密领域,最常应用于光学加工方面。综述了磁流变抛光技术材料去除数学模型的建立进展,论证了该模型的正确性,总结出该基本模型具有通用性,模型能够适用于平面和凸球面等形面加工中,此外,对实现计算机控制抛光过程的准确性具有指导意义。概述了磁流变抛光工艺实验进展,总结磁流变抛光影响抛光效果的主要因素是磁场强度和磁场发生装置,在优化工艺参数组合下能够达到纳米级表面,能够消除亚表面损伤,还能够用以加工各种复杂形面等。就目前磁流变抛光技术的发展新方向作以总结,包括集群磁流变抛光技术、组合磁流变抛光技术以及磁流变-超声复合抛光技术,介绍这几种加工方法的工作原理以及能够达到的实验效果。最后对现阶段磁流变抛光技术中存在的问题做出总结,并针对各个问题提出相对应的思考和展望。  相似文献   

9.
正高表面完整性加工为各种超精密机械零件及光电元器件制造所必需,在提高产品的性能、质量及寿命等方面发挥着十分重要的作用。而超精密磨削、抛光及各种特种加工技术能够得到具有纳米级甚至亚纳米级表面粗糙度、亚微米级面形精度、极低亚表面损伤的高完整性表面,适用于晶体、金属、玻璃、陶  相似文献   

10.
磁流变抛光光学表面加工面形控制技术研究   总被引:3,自引:0,他引:3  
磁流变抛光是一种新型超精密光学表面加工方法。由于其抛光过程可控,磁流变抛光过程可以有效去除表面及亚表面破坏层,提高表面质量,修正元器件表面面形误差。抛光过程容易实现计算机数控,通过数控过程的合理设计,磁流变抛光过程可以有效地对球面及非球表面进行抛光加工。研究了实现面形修正的驻留时间算法,并对光学球面器件进行了试验加工,抛光后其表面面形误差2点峰谷值从0.17μm降低到0.07μm。  相似文献   

11.
基于芬顿反应的磁流变化学复合抛光加工原理,对单晶SiC基片进行磁流变化学复合抛光试验,研究工艺参数对其抛光效果的影响。结果表明:随着金刚石磨粒粒径的增大,材料去除率先增大后减小,而表面粗糙度先减小后增大;随着磨粒质量分数的增大,材料去除率增大,而表面粗糙度先减小后增大;当羰基铁粉质量分数增大时,材料去除率增大,而表面粗糙度呈先减小后增大的趋势;随着氧化剂质量分数增大,材料去除率先增大后减小,而表面粗糙度呈现先减小后增大的趋势;加工间隙对材料去除率的影响较大,加工间隙为1.0?mm时,加工表面质量较好;随着工件转速和抛光盘转速增大,材料去除率均先增大后减小,表面粗糙度均先减小后增大。获得的优化的工艺参数为:磨粒粒径,1.0 μm;磨粒质量分数,5%;羰基铁粉质量分数,25%;过氧化氢质量分数,5%;加工间隙,1.0 mm;工件转速,500 r/min;抛光盘转速,20 r/min。采用优化的工艺参数对表面粗糙度约为40.00 nm的单晶SiC进行加工,获得表面粗糙度为0.10 nm以下的光滑表面。   相似文献   

12.
为研究单晶硅磨削损伤,使用金刚石磨块在不同磨削速度和压力下对单晶硅表面进行高速划擦试验,金刚石的粒度尺寸为38~45 μm。通过测量硅片表面粗糙度、亚表面损伤深度和材料去除率,研究磨块的磨削速度和压力对材料去除特性的影响规律。结果表明:相同压力时,材料去除率随磨削速度增加呈先增大后减小的趋势,亚表面损伤深度逐渐变小;随法向压力增大,亚表面损伤深度变化不明显;在5N压力下,表面粗糙度值Ra变化明显,由6.4 μm减小到3.2 μm;而10 N压力下,Ra无明显变化。   相似文献   

13.
为了提高单晶Si材料在抛光时表面和亚表面完整性的目标。该研究中,使用分子动力学(MD)模拟金刚石磨粒在石墨烯润滑下三体抛光单晶Si的机械抛光方法。在相同的加工参数下调整抛光速度将结果进行比较。研究了纳米抛光过程中抛光力,原子位移,配位数,温度,势能,摩擦系数的数值发展和抛光表面形貌变化。分析表明,较大的抛光速度明显导致较高的温度和较高的势能。然而,较小的抛光速度并不会导致更少的缺陷原子和Bct5-SI/SI-II类型原子,以及较低的材料去除效率。最后,石墨烯润滑的三体抛光单晶硅可以很好的改善表面质量,减小材料的去除效率。  相似文献   

14.
金刚石由于其独特的性质成为未来科技的重要材料,但较差的表面质量会影响其在高科技领域的应用,因此实现金刚石超精密加工是提高金刚石应用的关键。化学机械抛光(CMP)是集成电路中获得全局平坦化的一项重要工艺,能够实现金刚石的超精密加工。介绍了现有的金刚石加工方法和金刚石化学机械抛光的研究现状,并与其他的加工方法(机械抛光、摩擦化学抛光、热化学抛光等)进行了对比,其他加工方法存在加工后表面损伤严重、加工表面粗糙度无法满足需要等问题。金刚石的化学机械抛光工艺经历了由高温抛光向常温抛光的发展过程,该加工方法设备简单、成本低、抛光后的表面粗糙度(Ra)可以达到亚纳米级别。此外,金刚石的分子动力学模拟(MD)使人们从原子尺度对金刚石抛光过程中纳米粒子的相互作用和抛光机理有了深入了解。虽然金刚石化学机械抛光还存在着许多亟待解决的问题,但是其发展前景依旧十分乐观。  相似文献   

15.
The difficulty and cost involved in the abrasive machining of hard and brittle ceramics are among the major impediments to the widespread use of advanced ceramics in industries these days. It is often desired to increase the machining rate while maintaining the desired surface integrity. The success of this approach, however, relies in the understanding of mechanism of material removal on the microstructural scale and the relationship between the grinding characteristics and formation of surface/subsurface machining-induced damage. In this paper, grinding characteristics, surface integrity and material removal mechanisms of SiC ground with diamond wheel on surface grinding machine have been investigated. The surface and subsurface damages have been studied with scanning electron microscope (SEM). The effects of grinding conditions on surface/subsurface damage have been discussed. This research links the surface roughness, surface and subsurface damages to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grinding-induced damage on grinding conditions.  相似文献   

16.
目的 通过分子动力学(MD)模拟,获得双金刚石磨粒抛光单晶Si的去除机理.方法 采用一种新的单晶硅三体磨粒抛光方法,测试双磨粒的抛光深度和横向/纵向间距对三体磨粒抛光的影响,从而获得相变、表面/亚表面损伤等情况,并获得抛光过程中温度及势能的变化情况.结果 对比抛光深度为1、3 nm时配位数的情况,发现抛光深度为1 nm时,抛光完成时相变的原子数是4319,而抛光深度为3 nm时,相变原子数为12516.随着磨粒在Si工件表面抛光深度的加深,抛光和磨蚀引起的相变原子和损伤原子的数目增加.仿真结果还表明,单晶Si相变原子的种类和数目随磨粒横向间距的增加而增加,随着纵向间距的增加反而减少.系统的初始温度设为298 K,抛光深度为1 nm时,抛光完成时的温度是456 K,而抛光深度为3 nm时,温度是733 K.抛光完成时,纵向组和横向组的温度仅相差30~40 K.在抛光深度、横向间距和纵向间距3个对照组中,抛光深度对亚表面损伤的影响最大.抛光深度为3 nm时,亚表面的损伤深度最大,从而导致更多的材料从单晶Si工件表面去除.结论 双磨粒的抛光深度和间距不仅对硅的表面微观结构产生影响,还对相变产生影响.模拟参数相同时,较大的抛光深度和横向间距下会产生更多的相变原子,因此相变受抛光深度的影响最大,受纵向间距的影响最小.  相似文献   

17.
为探究非晶层结构对单晶锗纳米切削机制和力学特性的影响,采用分子动力学方法模拟不同非晶层厚度的非晶-晶体层状结构(A-C模型)的纳米切削过程.对纳米加工中切削力波动规律,应力状态,亚表面损伤和材料去除等关键问题进行分析.结果 表明:非晶锗(A-Ge)厚度的增加使得切削力和应力减小,切削温度升高;材料的可塑性随着A-Ge厚...  相似文献   

18.
针对超精密磨削加工过程对工件材料去除效率、表面质量、亚表面损伤等指标的复合需求,提出一种基于泰勒多边形设计的随机网格结构固结磨料磨盘(textured-fixed abrasive plate, T-FAP),并以光固化树脂作为结合剂基体材料混合微米级氧化铝磨料制备磨盘,使用MATLAB图像分析和磨抛轨迹仿真方法研究磨盘磨削过程中表面磨损时变图案特征对其加工性能的影响,并通过铝制工件的平面磨削实验对磨盘磨削过程中的材料去除率及工件表面粗糙度进行分析。实验结果表明:相比传统固结磨料磨盘,采用随机网格结构磨盘加工的工件表面粗糙度为0.84 μm,材料去除率为3.21 μm/min,能够在保证材料去除率的同时获得较高的表面精度。   相似文献   

19.
综述了陶瓷基复合材料的传统机械加工、超声辅助加工、激光加工、多能场复合加工等加工方式的研究进展,并简述了几种加工方式的优缺点.对陶瓷基复合材料的表面及亚表面损伤机制进行了总结和分析,包括材料表面亚表面损伤形式、材料表面亚表面理论及模型研究.提出了传统的陶瓷基复合材料加工技术需要进一步优化刀具材料、开发新的刀具结构、优化工艺参数等,以减少加工缺陷.研究了复合加工中材料去除率最大条件下的损伤容限条件、材料加工后的性能保持性等,同时探究了高效高质量的多能场复合加工新方法及其应用理论,以及研究探索了在复杂载荷及动载荷(如动态切削力、高温切削及超声动态冲击载荷)耦合作用下陶瓷基复合材料的内在损伤机理及演化问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号