首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以醇酸镓Ga(OC2H5)3作前驱体,利用溶胶-凝胶法和高温氨化法相结合,成功的合成了GaN粉末.用X射线衍射(XRD)、扫描电子显微镜(SEM)、选择区电子衍射(SAED)、光致发光谱(PL)对粉末的结构、形貌和发光特性进行了表征.结果表明在950℃时,可以得到纯度较高的GaN粉末且采用该工艺合成的GaN粉末粒度较均匀,生成的GaN多晶絮状颗粒为六方纤锌矿结构,室温下光致发光谱的测试结果发现了较强的402 nm处的近带边发光峰和460 nm处的蓝色发光峰.  相似文献   

2.
利用射频磁控溅射技术在Si(111)衬底上制备Ga2O3/BN薄膜,在氨气中退火合成了大量的一维GaN纳米棒.用X射线衍射(XRD)、选区电子衍射(SAED)、傅立叶红外透射谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光致发光谱(PL)对样品的晶体结构、元素成分、形貌特征和光学特性进行了分析.结果表明GaN纳米棒为六方纤锌矿结构的单晶相,其直径在150 nm~400 nm左右,长度可达几十微米.室温下光致发光谱的测试发现了较强的372nm处的强紫外发光峰和420nm处的蓝色发光峰.  相似文献   

3.
利用射频磁控溅射技术在Si(111)衬底上制备Ga2O3/BN薄膜,在氨气中退火合成了大量的一维GaN纳米棒.用X射线衍射(XRD)、选区电子衍射(SAED)、傅立叶红外透射谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和光致发光谱(PL)对样品的晶体结构、元素成分、形貌特征和光学特性进行了分析.结果表明:GaN纳米棒为六方纤锌矿结构的单晶相,其直径在150 nm~400 nm左右,长度可达几十微米.室温下光致发光谱的测试发现了较强的372nm处的强紫外发光峰和420nm处的蓝色发光峰.  相似文献   

4.
报道了1种新形态的GaN低维纳米材料--镊子状纳米GaN的合成及其新颖的光致发光特性.首先,对单晶MgO基片表面进行化学刻蚀,使其表面形成规则的小山峰样突起结构.随后,通过金属镓与氨气反应,在经上述特殊处理后的立方MgO单晶基片上,首次成功地合成出镊子状纳米GaN.场发射扫描电镜、能量损失谱、X-Ray衍射、透射电镜及选区电子衍射结果表明镊子状纳米GaN是由底部的1根直径大约为100 nm~150 nm的纳米棒和上部的2根直径大约为40 nm~70nm的纳米针组成;纳米镊子是具有立方闪锌矿结构的GaN单晶.光致发光谱研究表明,镊子状纳米GaN在450nm左右有1个宽的强发光峰,该发光峰处于蓝带发光区.此外,在418 nm,450 nm及469 nm处各有1个劈裂峰.  相似文献   

5.
用射频磁控溅射工艺在室温扩镓硅衬底上沉积Ga2O3膜,然后在氨气气氛下氮化Ga2O3膜得到GaN微米带,用X射线衍射(XRD)、扫描电镜(SEM)、选区电子衍射(SAED)、X射线光电子能谱(XPS)及光致发光谱(PL)对薄膜样品进行了结构、表面形貌、组分及发光特性分析.SEM图像显示直径约为100 nm~300 nm微米带随机分布在GaN薄膜表面.XRD、XPS及SAED分析表明GaN微米带呈六方闪锌矿多晶结构,择优沿[001]方向生长.P1显示了可能由量子限制效应引起的发光峰,其相对于报道的GaN晶体发光峰有显著蓝移.  相似文献   

6.
采用射频磁控溅射技术在硅衬底上制备Ga2O3/Nb薄膜,然后在900℃下于流动的氨气中进行氨化制备GaN纳米线.用X射线衍射(XRD)、透射电子显微镜(TEM)和高分辨透射电子显微镜详细分析了GaN纳米线的结构和形貌.结果表明:采用此方法得到的GaN纳米线有直的形态和光滑的表面,其纳米线的直径大约50nm,纳米线的长约几个微米.室温下以325nm波长的光激发样品表面,只显示出一个位于367 nm的很强的紫外发光峰.最后,简单讨论了GaN纳米线的生长机制.  相似文献   

7.
钽催化磁控溅射法制备GaN纳米线   总被引:1,自引:0,他引:1  
利用磁控溅射技术通过氮化Ga2O3/Ta薄膜,合成大量的一维单晶纤锌矿型氮化镓纳米线.用X射线衍射、扫描电子显微镜、高分辨透射电子显微镜,选区电子衍射和光致发光谱对制备的氮化镓进行了表征.结果表明;制备的GaN纳米线是六方纤锌矿结构,其直径大约20~60 nm,其最大长度可达10 μm左右.室温下光致发光谱测试发现363 nm处的较强紫外发光峰.另外,简单讨论了氮化镓纳米线的生长机制.  相似文献   

8.
通过水溶胶-凝胶法合成Eu掺杂钇铝石榴石纳(YAG∶Eu)米粉末.采用X射线衍射仪、热重和差热分析仪、扫描电子显微镜、透射电子显微镜和发光谱仪等研究粉末的结构、形貌和发光光谱.结果表明:合成的YAG∶Eu纳米粉末平均粒径为50nm,在煅烧过程中其活化能为24.1 kJ/mol,YAG∶Eu纳米粉末晶体表现出橙-红发射特...  相似文献   

9.
以甘氨酸作燃烧剂采用燃烧法制备Y_2Zr_2O_7:Tb~(3+)纳米晶粉末.用X射线衍射仪(XRD)、高分辨透射电子显微镜(HRTEM)和荧光分光光度计对Y_2Zr_2O_7:Tb~(3+)纳米晶的相结构、形貌和发光性质进行研究.结果表明:所得到的纳米晶粒度均匀、结晶完好,属于立方萤石结构.发光光谱的测试表明:Tb~(3+)呈现其特征绿色发射,最强峰位于542 nm处.Tb~(3+)的掺杂摩尔浓度在0.5%~6%的范围内,3%为最佳掺杂浓度.  相似文献   

10.
采用微波辅助溶胶-凝胶法制备了系列绿色发光粉NaLa31-x(MoO4)2:Tb+x(x=0.02,0.1,0.15)。用X射线粉末衍射仪和荧光分光光度计等分析和表征所合成样品的物相结构和发光性质。结果表明:所合成的NaLa(MoO4)2:Tb3+晶体结构与NaLa(MoO4)2相似,属四方晶系结构;样品的激发光谱为位于250~350 nm的1个宽带,最大激发峰位于300 nm处;发射光谱由一系列尖峰组成,最强的发射峰位于544 nm处,归属于Tb3+的5D4-7F5跃迁。NaLa(MoO4)2:Tb3+的发光强度随Tb3+掺杂浓度的增加逐渐加强,当Tb3+浓度为10 mol%时发光强度最大,而后随Tb3+浓度的增加而降低,发生浓度猝灭。根据Dexter能量共振理论,该浓度猝灭系Tb3+的电偶极-电偶极的相互作用所致。通过含氧酸根阴离子(SO2-4)的掺杂有效提高了NaLa(MoO4)2:Tb3+体系的发光亮度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号