首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The combined heat and mass transfer of unsteady magnetohydrodynamic free convection flow of Jeffrey fluid past an oscillating vertical plate generated by thermal radiation and Newtonian heating is investigated. The incompressible fluid is electrically conducting in the presence of a uniform magnetic field which acts in a direction perpendicular to the flow. Mathematical formulation of the problem is modeled in terms of partial differential equations with some physical conditions. Some suitable non-dimensional variables are introduced to transform the system of equations. The dimensionless governing equations are solved analytically for exact solutions using the Laplace transform technique. Numerical solutions of velocity are obtained via finite difference scheme. Graphical results for velocity, temperature and concentration fields for various pertinent parameters such as material parameter of Jeffrey fluid \(\lambda_{1}\), dimensionless parameter of Jeffrey fluid \(\lambda\), Newtonian heating parameter \(\xi\), phase angle \(\omega t\), Grashof number \(Gr\), modified Grashof number \(Gm\), Hartmann number or magnetic parameter \(Ha\), Prandtl number \(Pr\), radiation parameter \(Rd\), Schimdt number \(Sc\) and dimensionless time \(t\) are displayed and discussed in detail. This study showed that the magnetic field resists the fluid flow due to the Lorentz force, whereas the thermal radiation and Newtonian heating parameters lead to the enhancement of velocity and temperature fields. Present results are also compared with the existing published work, and an excellent agreement is found.

  相似文献   

2.
Two-dimensional orthogonal matching pursuit (2D-OMP) algorithm is an extension of the one-dimensional OMP (1D-OMP), whose complexity and memory usage are lower than the 1D-OMP when they are applied to 2D sparse signal recovery. However, the major shortcoming of the 2D-OMP still resides in long computing time. To overcome this disadvantage, we develop a novel parallel design strategy of the 2D-OMP algorithm on a graphics processing unit (GPU) in this paper. We first analyze the complexity of the 2D-OMP and point out that the bottlenecks lie in matrix inverse and projection. After adopting the strategy of matrix inverse update whose performance is superior to traditional methods to reduce the complexity of original matrix inverse, projection becomes the most time-consuming module. Hence, a parallel matrix–matrix multiplication leveraging tiling algorithm strategy is launched to accelerate projection computation on GPU. Moreover, a fast matrix–vector multiplication, a parallel reduction algorithm, and some other parallel skills are also exploited to boost the performance of the 2D-OMP further on GPU. In the case of the sensing matrix of size 128 \(\times \) 256 (176 \(\times \) 256, resp.) for a 256 \(\times \) 256 scale image, experimental results show that the parallel 2D-OMP achieves 17 \(\times \) to 41 \(\times \) (24 \(\times \) to 62 \(\times \) , resp.) speedup over the original C code compiled with the O \(_2\) optimization option. Higher speedup would be further obtained with larger-size image recovery.  相似文献   

3.
Array operations are useful in a lot of scientific codes. In recent years, several applications, such as the geological analysis and the medical images processing, are processed using array operations for three-dimensional (abbreviate to “3D”) sparse arrays. Due to the huge computation time, it is necessary to compress 3D sparse arrays and use parallel computing technologies to speed up sparse array operations. How to compress the sparse arrays efficiently is an important task for practical applications. Hence, in this paper, two strategies, inter- and intra-task parallelization (abbreviate to “ETP” and “RTP”), are presented to compress 3D sparse arrays, respectively. Each strategy was designed and implemented on Intel Xeon and Xeon Phi, respectively. From experimental results, the ETP strategy achieves 17.5\(\times \) and 18.2\(\times \) speedup ratios based on Intel Xeon E5-2670 v2 and Intel Xeon Phi SE10X, respectively; 4.5\(\times \) and 4.5\(\times \) speedup ratios for the RTP strategy based on these two environments, respectively.  相似文献   

4.

Electrocardiogram is widely used to diagnose the congestive heart failure (CHF). It is the primary noninvasive diagnostic tool that can guide in the management and follow-up of patients with CHF. Heart rate variability (HRV) signals which are nonlinear in nature possess the hidden signatures of various cardiac diseases. Therefore, this paper proposes a nonlinear methodology, empirical mode decomposition (EMD), for an automated identification and classification of normal and CHF using HRV signals. In this work, HRV signals are subjected to EMD to obtain intrinsic mode functions (IMFs). From these IMFs, thirteen nonlinear features such as approximate entropy \( (E_{\text{ap}}^{x} ) \), sample entropy \( (E_{\text{s}}^{x} ) \), Tsallis entropy \( (E_{\text{ts}}^{x} ) \), fuzzy entropy \( (E_{\text{f}}^{x} ) \), Kolmogorov Sinai entropy \( (E_{\text{ks}}^{x} ) \), modified multiscale entropy \( (E_{{{\text{mms}}_{y} }}^{x} ) \), permutation entropy \( (E_{\text{p}}^{x} ) \), Renyi entropy \( (E_{\text{r}}^{x} ) \), Shannon entropy \( (E_{\text{sh}}^{x} ) \), wavelet entropy \( (E_{\text{w}}^{x} ) \), signal activity \( (S_{\text{a}}^{x} ) \), Hjorth mobility \( (H_{\text{m}}^{x} ) \), and Hjorth complexity \( (H_{\text{c}}^{x} ) \) are extracted. Then, different ranking methods are used to rank these extracted features, and later, probabilistic neural network and support vector machine are used for differentiating the highly ranked nonlinear features into normal and CHF classes. We have obtained an accuracy, sensitivity, and specificity of 97.64, 97.01, and 98.24 %, respectively, in identifying the CHF. The proposed automated technique is able to identify the person having CHF alarming (alerting) the clinicians to respond quickly with proper treatment action. Thus, this method may act as a valuable tool for increasing the survival rate of many cardiac patients.

  相似文献   

5.
We study the problem of non-preemptively scheduling n jobs, each job j with a release time \(t_j\), a deadline \(d_j\), and a processing time \(p_j\), on m parallel identical machines. Cieliebak et al. (2004) considered the two constraints \(|d_j-t_j|\le \lambda {}p_j\) and \(|d_j-t_j|\le p_j +\sigma \) and showed the problem to be NP-hard for any \(\lambda >1\) and for any \(\sigma \ge 2\). We complement their results by parameterized complexity studies: we show that, for any \(\lambda >1\), the problem remains weakly NP-hard even for \(m=2\) and strongly W[1]-hard parameterized by m. We present a pseudo-polynomial-time algorithm for constant m and \(\lambda \) and a fixed-parameter tractability result for the parameter m combined with \(\sigma \).  相似文献   

6.
7.
One way to depict a crystallographic structure is by a periodic (di)graph, i.e., a graph whose group of automorphisms has a translational subgroup of finite index acting freely on the structure. We establish a relationship between periodic graphs representing crystallographic structures and an infinite hierarchy of intersection languages \(\mathcal {DCL}_d,\,d=0,1,2,\ldots \), within the intersection classes of deterministic context-free languages. We introduce a class of counter machines that accept these languages, where the machines with d counters recognize the class \(\mathcal {DCL}_d\). An intersection of d languages in \(\mathcal {DCL}_1\) defines \(\mathcal {DCL}_d\). We prove that there is a one-to-one correspondence between sets of walks starting and ending in the same unit of a d-dimensional periodic (di)graph and the class of languages in \(\mathcal {DCL}_d\). The proof uses the following result: given a digraph \(\Delta \) and a group G, there is a unique digraph \(\Gamma \) such that \(G\le \mathrm{Aut}\,\Gamma ,\,G\) acts freely on the structure, and \(\Gamma /G \cong \Delta \).  相似文献   

8.
We compare different notions of simultaneous measurability (compatibility) of observables on lattice \(\sigma \)-effect algebras and more generally, on \(\sigma \)-effect algebras that can be covered by \(\sigma \)-MV-algebras. We prove that every \(\sigma \)-MV-algebra is the range of a \(\sigma \)-additive observable, and we compare the following notions of compatibility of observables: joint measurability, coexistence, joint measurability of binarizations, coexistence of binarizations, smearings of the same observable. We prove that if there is a faithful state on the effect algebra, then any two standard observables that are smearings of the same (sharp) observable admit a generalized joint observable.  相似文献   

9.
We present some new analytical polygamy inequalities satisfied by the x-th power of convex-roof extended negativity of assistance with \(x\ge 2\) and \(x\le 0\) for multi-qubit generalized W-class states. Using Rényi-\(\alpha \) entropy (R\(\alpha \)E) with \(\alpha \in [(\sqrt{7}-1)/2, (\sqrt{13}-1)/2]\), we prove new monogamy and polygamy relations. We further show that the monogamy inequality also holds for the \(\mu \)th power of Rényi-\(\alpha \) entanglement. Moreover, we study two examples in multipartite higher-dimensional system for those new inequalities.  相似文献   

10.
Jin  Long  Zhang  Yunong  Qiu  Binbin 《Neural computing & applications》2018,29(11):1217-1232

To solve dynamic system of linear equations with square or rectangular system matrices in real time, a discrete-time Z-type model based on neural network is proposed and investigated. It is developed from and studied with the aid of a unified continuous-time Z-type model. Note that the framework of such a unified continuous-time Z-type model is generic and has a wide range of applications, such as robotic redundancy resolution with quadratic programming formulations. To do so, a one-step-ahead numerical differentiation formula and its optimal sampling-gap rule in noisy environments are presented. We compare the Z-type model extensively with E-type and N-type models. Theoretical results on stability and convergence are provided which show that the maximal steady-state residual errors of the Z-type, E-type and N-type models have orders \(O(\tau ^3)\), \(O(\tau ^2)\) and \(O(\tau )\), respectively, where \(\tau \) is the sampling gap. We also prove that the residual error of any static method that does not exploit the time-derivative information of a time-dependent system of linear equations has order \(O(\tau )\) when applied to solve discrete real-time dynamic system of linear equations. Finally, several illustrative numerical experiments in noisy environments as well as two application examples to the inverse-kinematics control of redundant manipulators are provided and illustrated. Our analysis substantiates the efficacy of the Z-type model for solving the dynamic system of linear equations in real time.

  相似文献   

11.
What is the minimal number of elements in a rank-1 positive operator-valued measure (POVM) which can uniquely determine any pure state in d-dimensional Hilbert space \(\mathcal {H}_d\)? The known result is that the number is no less than \(3d-2\). We show that this lower bound is not tight except for \(d=2\) or 4. Then we give an upper bound \(4d-3\). For \(d=2\), many rank-1 POVMs with four elements can determine any pure states in \(\mathcal {H}_2\). For \(d=3\), we show eight is the minimal number by construction. For \(d=4\), the minimal number is in the set of \(\{10,11,12,13\}\). We show that if this number is greater than 10, an unsettled open problem can be solved that three orthonormal bases cannot distinguish all pure states in \(\mathcal {H}_4\). For any dimension d, we construct \(d+2k-2\) adaptive rank-1 positive operators for the reconstruction of any unknown pure state in \(\mathcal {H}_d\), where \(1\le k \le d\).  相似文献   

12.
We address the problem of counting emitted photons in two-photon laser scanning microscopy. Following a laser pulse, photons are emitted after exponentially distributed waiting times. Modeling the counting process is of interest because photon detectors have a dead period after a photon is detected that leads to an underestimate of the count of emitted photons. We describe a model which has a Poisson \((\alpha )\) number N of photons emitted, and a dead period \(\Delta \) that is standardized by the fluorescence time constant \(\tau (\delta = \Delta /\tau )\), and an observed count D. The estimate of \(\alpha \) determines the intensity of a single pixel in an image. We first derive the distribution of D and study its properties. We then use it to estimate \(\alpha \) and \(\delta \) simultaneously by maximum likelihood. We show that our results improve the signal-to-noise ratio, hence the quality of actual images.  相似文献   

13.
We show that the category \(L\) - \(\mathbf{Top}_{0}\) of \(T_{0}\) - \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}\) of \(L\) -topological spaces and the category \(L\) - \(\mathbf{Sob}\) of sober \(L\) -topological spaces is the epireflective hull of Sierpinski \(L\) -topological space in the category \(L\) - \(\mathbf{Top}_{0}\) .  相似文献   

14.
For any graph class \(\mathcal{H}\) , the \(\mathcal{H}\) -Contraction problem takes as input a graph \(G\) and an integer \(k\) , and asks whether there exists a graph \(H\in \mathcal{H}\) such that \(G\) can be modified into \(H\) using at most \(k\) edge contractions. We study the parameterized complexity of \(\mathcal{H}\) -Contraction for three different classes \(\mathcal{H}\) : the class \(\mathcal{H}_{\le d}\) of graphs with maximum degree at most  \(d\) , the class \(\mathcal{H}_{=d}\) of \(d\) -regular graphs, and the class of \(d\) -degenerate graphs. We completely classify the parameterized complexity of all three problems with respect to the parameters \(k\) , \(d\) , and \(d+k\) . Moreover, we show that \(\mathcal{H}\) -Contraction admits an \(O(k)\) vertex kernel on connected graphs when \(\mathcal{H}\in \{\mathcal{H}_{\le 2},\mathcal{H}_{=2}\}\) , while the problem is \(\mathsf{W}[2]\) -hard when \(\mathcal{H}\) is the class of \(2\) -degenerate graphs and hence is expected not to admit a kernel at all. In particular, our results imply that \(\mathcal{H}\) -Contraction admits a linear vertex kernel when \(\mathcal{H}\) is the class of cycles.  相似文献   

15.
Many-core systems are basically designed for applications having large data parallelism. We propose an efficient hybrid matrix multiplication implementation based on Strassen and Winograd algorithms (S-MM and W-MM) on many-core. A depth first (DFS) traversal of a recursion tree is used where all cores work in parallel on computing each of the \(N \times N\) sub-matrices, which are computed in sequence. DFS reduces the storage to the detriment of large data motion to gather and aggregate the results. The proposed approach uses three optimizations: (1) a small set of basic algebra functions to reduce overhead, (2) invoking efficient library (CUBLAS 5.5) for basic functions, and (3) using parameter-tuning of parametric kernel to improve resource occupancy. Evaluation of S-MM and W-MM is carried out on GPU and MIC (Xeon Phi). For GPU, W-MM and S-MM with one recursion level outperform CUBLAS 5.5 Library with up to twice as fast for arrays satisfying \(N \ge 2048\) and \(N \ge 3072\), respectively. Similar trends are observed for S-MM with reordering (R-S-MM), which is used to save storage. Compared to NVIDIA SDK library, S-MM and W-MM achieved a speedup between 20\(\times \) and 80\(\times \) for the above arrays. For MIC, two-recursion S-MM with reordering is faster than MKL library by 14–26 % for \(N \ge 1024\). Proposed implementations achieve 2.35 TFLOPS (67 % of peak) on GPU and 0.5 TFLOPS (21 % of peak) on MIC. Similar encouraging results are obtained for a 16-core Xeon-E5 server. We conclude that S-MM and W-MM implementations with a few recursion levels can be used to further optimize the performance of basic algebra libraries.  相似文献   

16.
Given a sparse matrix, its LU-factors, inverse and inverse factors typically suffer from substantial fill-in, leading to non-optimal complexities in their computation as well as their storage. In the past, several computationally efficient methods have been developed to compute approximations to these otherwise rather dense matrices. Many of these approaches are based on approximations through sparse matrices, leading to well-known ILU, sparse approximate inverse or factored sparse approximate inverse techniques and their variants. A different approximation approach is based on blockwise low rank approximations and is realized, for example, through hierarchical (\(\mathcal H\)-) matrices. While \(\mathcal H\)-inverses and \(\mathcal H\)-LU factors have been discussed in the literature, this paper will consider the construction of an approximation of the factored inverse through \(\mathcal H\)-matrices (\(\mathcal H\)-FAINV). We will describe a blockwise approach that permits to replace (exact) matrix arithmetic through approximate efficient \(\mathcal H\)-arithmetic. We conclude with numerical results in which we use approximate factored inverses as preconditioners in the iterative solution of the discretized convection–diffusion problem.  相似文献   

17.
We propose, analyze, and test a new MHD discretization which decouples the system into two Oseen problems at each timestep yet maintains unconditional stability with respect to the time step size, is optimally accurate in space, and behaves like second order in time in practice. The proposed method chooses a parameter \(\theta \in [0,1]\), dependent on the viscosity \(\nu \) and magnetic diffusivity \(\nu _m\), so that the explicit treatment of certain viscous terms does not cause instabilities, and gives temporal accuracy \(O(\Delta t^2 + (1-\theta )|\nu -\nu _m|\Delta t)\). In practice, \(\nu \) and \(\nu _m\) are small, and so the method behaves like second order. When \(\theta =1\), the method reduces to a linearized BDF2 method, but it has been proven by Li and Trenchea that such a method is stable only in the uncommon case of \(\frac{1}{2}< \frac{\nu }{\nu _m} < 2\). For the proposed method, stability and convergence are rigorously proven for appropriately chosen \(\theta \), and several numerical tests are provided that confirm the theory and show the method provides excellent accuracy in cases where usual BDF2 is unstable.  相似文献   

18.
Users of location-based services are highly vulnerable to privacy risks since they need to disclose, at least partially, their locations to benefit from these services. One possibility to limit these risks is to obfuscate the location of a user by adding random noise drawn from a noise function. In this paper, we require the noise functions to satisfy a generic location privacy notion called \(\ell \)-privacy, which makes the position of the user in a given region \(\mathcal {X}\) relatively indistinguishable from other points in \(\mathcal {X}\). We also aim at minimizing the loss in the service utility due to such obfuscation. While existing optimization frameworks regard the region \(\mathcal {X}\) restrictively as a finite set of points, we consider the more realistic case in which the region is rather continuous with a nonzero area. In this situation, we demonstrate that circular noise functions are enough to satisfy \(\ell \)-privacy on \(\mathcal {X}\) and equivalently on the entire space without any penalty in the utility. Afterward, we describe a large parametric space of noise functions that satisfy \(\ell \)-privacy on \(\mathcal {X}\), and show that this space has always an optimal member, regardless of \(\ell \) and \(\mathcal {X}\). We also investigate the recent notion of \(\epsilon \)-geo-indistinguishability as an instance of \(\ell \)-privacy and prove in this case that with respect to any increasing loss function, the planar Laplace noise function is optimal for any region having a nonzero area.  相似文献   

19.

Hill climbing method is an optimization technique that is able to build a search trajectory in the search space until reaching the local optima. It only accepts the uphill movement which leads it to easily get stuck in local optima. Several extensions to hill climbing have been proposed to overcome such problem such as Simulated Annealing, Tabu Search. In this paper, an extension version of hill climbing method has been proposed and called \(\beta\)-hill climbing. A stochastic operator called \(\beta\)-operator is utilized in hill climbing to control the balance between the exploration and exploitation during the search. The proposed method has been evaluated using IEEE-CEC2005 global optimization functions. The results show that the proposed method is a very efficient enhancement to the hill climbing providing powerful results when it compares with other advanced methods using the same global optimization functions.

  相似文献   

20.
We propose a scheme for generating atomic NOON states via adiabatic passage. In the scheme, a double \(\Lambda \) -type three-level atom is trapped in a bimodal cavity, and two sets of \(\Lambda \) -type three-level atoms are translated into and outside of two single-mode cavities, respectively. The three cavities connected by optical fibers are always in vacuum states. After a series of operations and suitable interaction time, we can obtain arbitrary large- \(n\) NOON states of two sets of \(\Lambda \) -type three-level atoms in distant cavities by performing a single projective measurement on the double \(\Lambda \) -type three-level atom. Our scheme is robust against the spontaneous emissions of atoms, the decays of fibers, and photon leakage of cavities, due to the adiabatic elimination of atomic excited states and the application of adiabatic passage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号