首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
为了实时校正供电电源噪声引起的数字音频D类功放输出误差,提出一种基于FPGA的电源误差校正方法。使用高精度ADC芯片将电源纹波信号转化为数字量后送入FPGA,校正模块根据电源纹波的大小对数字音频D类功放Sigma-Delta调制器输入值进行预校正处理,从而实现在功放输出端有效的抑制电源噪声。经过实际电路测试,该方法可以有效的抑制电源噪声对数字音频D类功放的影响,电源抑制比达到36.78 dB。  相似文献   

2.
This paper deals with the design of an algorithmic switched-capacitor analog-to-digital converter (ADC), operating with a single reference voltage, a single-ended amplifier, a single-ended comparator, and presenting a small input capacitance. The ADC requires two clock phases per conversion bit and N clock cycles to resolve the N-bits. The ADC achieves a measured peak signal-to-noise-ratio (SNR) of 49.9 dB and a peak signal-to-noise-and-distortion-ratio (SNDR) of 46.7 dB at Pin = ?6dBFS with a sampling rate of 0.25 MS/s. The measured differential-non-linearity and integral-non-linearity are within +0.6/?0.5 and +0.2/?0.5 LSB, respectively. The ADC power consumption is 300 μW and it is implemented in 90 nm CMOS technology with a single power supply of 1.2 V. The ADC saves power at system-level by requiring only a single reference voltage. At system level, this solution is therefore not only robust but competitive as well.  相似文献   

3.
This paper presents an experimental prototype of 2nd-order multi-bit \(\Delta \Sigma \)AD modulator with dynamic analog components for low power and high signal to noise and distortion (SNDR) application. The integrators in the modulator are realized by ring amplifier without static current. Multi-bit quantizer and analog adder in the feed-forward modulator is realized by a passive-adder embedded successive approximation register analog to digital converter which consists of capacitor array and a dynamic comparator. The dynamic comparator does not dissipate static power at all when a pre-amplifier is not used. Proposed modulator is fabricated in TSMC 90 nm CMOS technology. Measurement results of the modulator dynamic range is over 84 dB. Measured peak SNDR = 77.51 dB, SNR = 80.08 dB are achieved for the bandwidth of BW = 94 kHz while a sinusoid differential \(-1\) dBFS input is sampled at 12 MS/s. The total analog power consumption of the modulator is 0.37 mW while the supply voltage is 1.1 V.  相似文献   

4.
As the technology scales down, shrinking geometry and layout dimension, on- chip interconnects are exposed to different noise sources such as crosstalk coupling, supply voltage fluctuation and temperature variation that cause random and burst errors. These errors affect the reliability of the on-chip interconnects. Hence, error correction codes integrated with noise reduction techniques are incorporated to make the on-chip interconnects robust against errors. The proposed error correction code uses triplication error correction scheme as crosstalk avoidance code (CAC) and a parity bit is added to it to enhance the error correction capability. The proposed error correction code corrects all the error patterns of one bit error, two bit errors. The proposed code also corrects 7 out of 10 possible three bit error patterns and detects burst errors of three. Hybrid Automatic Repeat Request (HARQ) system is employed when burst errors of three occurs. The performance of the proposed codec is evaluated for residual flit error rate, codec area, power, delay, average flit latency and link energy consumption. The proposed codec achieves four magnitude order of low residual flit error rate and link energy minimization of over 53 % compared to other existing error correction schemes. Besides the low residual flit error rate, and link energy minimization, the proposed codec also achieves up to 4.2 % less area and up to 6 % less codec power consumption compared to other error correction codes. The less codec area, codec power consumption, low link energy and low residual flit error rate make the proposed code appropriate for on chip interconnection link.  相似文献   

5.
A very low power consumption Viterbi decoder LSIC has been developed by using a low supply voltage 0.8 μm CMOS masterslice process technology. By employing the scarce state transition (SST) scheme, this LSIC achieves a drastic reduction in power consumption below 600 μW at a supply voltage of 1 V when the data rate is 1152 kbit/s and the bit error rate is less than 10-3. This excellent performance has paved the way to employing the strong forward error correction and low power consumption portable terminals for personal communications, mobile multimedia communications, and digital and audio broadcasting  相似文献   

6.
This work presents the design and the measured performance of a 8 Gb/s transimpedance amplifier (TIA) fabricated in a 90 nm CMOS technology. The introduced TIA uses an inverter input stage followed by two common-source stages with a 1.5 kΩ feedback resistor. The TIA is followed by a single-ended to differential converter stage, a differential amplifier and a 50 Ω differential output driver to provide an interface to the measurement setup. The optical receiver shows a measured optical sensitivity of ?18.3 dBm for a bit error rate = 10?9. A gain control circuitry is integrated with the TIA to increase its input photo-current dynamic range (DR) to 32 dB. The TIA has an input photo-current range from 12 to 500 μA without overloading. The stability is guaranteed over the whole DR. The optical receiver achieves a transimpedance gain of 72 dBΩ and 6 GHz bandwidth with 0.3 pF total input capacitance for the photodiode and input PAD. The TIA occupies 0.0036 mm2 whereas the complete optical receiver occupies a chip area of 0.46 mm2. The power consumption of the TIA is only 12 mW from a 1.2 V single supply voltage. The complete chip dissipates 60 mW where a 1.6 V supply is used for the output stages.  相似文献   

7.
This paper presents a 7-bit 40 MS/s single-ended asynchronous SAR ADC intended for in-probe use in medical applications, which requires small area and good power efficiency. A single-ended architecture is proposed for a moderate resolution for its simplicity. Together with a double reference technique, the architecture reduces the area of the technology-limited large capacitors. The speed is optimized by an asymmetric delay line embedded in the asynchronous digital logic, enabling a sampling frequency of 40 MS/s. The prototype is fabricated in a 65 nm CMOS technology. Measurement shows that at 1 V supply and 40 MS/s, the ADC achieves an SNDR of 39.73 dB and an ENOB of 6.3 bit, while consuming 298.6 µW, resulting in an energy efficiency of 94.74 fJ/conversion-step. The core circuit layout only occupies 0.017 mm2.  相似文献   

8.
Pulsewidth modulated (PWM) signals for driving a switching audio amplifier can be synthesized in the digital domain with extremely high linearity and precision. However, nonidealities associated with the power stage degrade output performance. A method to digitally correct for these nonidealities, resulting in very low total harmonic distortion (THD) and high signal-to-noise ratio (SNR) performance, is presented. This method also provides excellent rejection of power supply noise which is otherwise absent in digital PWM amplifiers. To meet noise requirements for hi-fi audio, the feedback structure is a fourth-order structure which shapes the noise beyond the audio band. The method has been implemented on a bread board, and state-of-the-art performance was achieved. Total harmonic distortion of 85 dB and dynamic range of 100 dB was measured using Audio Precision test equipment.  相似文献   

9.
In this paper, a wide tuning-range CMOS voltage-controlled oscillator (VCO) with high output power using an active inductor circuit is presented. In this VCO design, the coarse frequency is achieved by tuning the integrated active inductor. The circuit has been simulated using a 0.18-µm CMOS fabrication process and presents output frequency range from 100 MHz to 2.5 GHz, resulting in a tuning range of 96%. The phase noise is –85 dBc/Hz at a 1 MHz frequency offset. The output power is from –3 dBm at 2.55 GHz to +14 dBm at 167 MHz. The active inductor power dissipation is 6.5 mW and the total power consumption is 16.27 mW when operating on a 1.8 V supply voltage. By comparing this active inductor architecture VCO with general VCO topology, the result shows that this topology, which employs the proposed active inductor, produces a better performance.  相似文献   

10.
A novel adaptive duty-cycle correction (DCC) architecture based on background calibration is developed. The proposed DCC loop is capable of correcting 17–80% duty error up to 4.6% at 8.1 GHz within 172 ns convergent time. During calibration, the whole loop including DCC buffer consumes 6.4 mA from 0.95 V supply but after calibration, digital feedback section does not burn additional dynamic power. The corner results show that the proposed calibration methodology can cope with process, voltage and temperature (PVT) variation adaptively. The architecture is implemented in 45 nm CMOS process and occupies 0.0032 mm2.  相似文献   

11.
We present a new noise shaping method and a dual-polarity calibration technique suited for successive approximation register type analog to digital converters (SAR–ADC). Noise is pushed to higher frequencies with the noise shaping by adding a switched capacitor. The SAR capacitor array mismatch has been compensated by the dual-polarity digital calibration with minimum circuit overhead. A proof-of-concept prototype SAR–ADC using the proposed techniques has been fabricated in a 0.5-μm standard CMOS technology. It achieves 67.7 dB SNDR at 62.5 kHz sampling frequency, while consuming 38.3 μW power with 1.8 V supply.  相似文献   

12.
The audio quality, robustness and implementational complexity of a novel mobile digital audio broadcast scheme are addressed. The audio codec proposed is based on an efficient combination of subband coding (SBC) and multipulse excited linear prediction coding (MPLPC). The bit allocation is dynamically adapted according to both the signal power in different subbands and a perceptual hearing model. Typically a segmental signal to noise ratio (SEGSNR) in excess of 30 dB associated with high fidelity subjective quality was achieved for 2.67-b/sample transmissions at a bit rate of 86 kb/s. Perceptually unimpaired audio quality was achieved for a bit error rate (BER) of about 10-4, when injecting random errors, which was degraded for increased BERs. In order to provide robust error protection, the audio codec was also subjected to a rigorous bit sensitivity analysis. Four different forward error correction schemes were investigated in order to explore the complexity, bit rate, and robustness tradeoffs  相似文献   

13.
This paper presents a high-gain and low-power balun-LNA for ultra-wideband receiver operating in the upper band (6–9 GHz). Common gate (CG) preamplifier in front of the active balun can provide input matching and suppress noise from the follow-up stages. Active balun shares bias current with the CG stage to reduce power consumption. Capacitor-cross-coupled buffer is cascaded for signal amplitude and phase correction. The balun-LNA is fabricated in TSMC 130 nm CMOS technology and it consumes 5.5 mA current from a 1.3-V supply including buffer. This balun-LNA can achieve wideband gain from 6.5 to 9.0 GHz and the maximum gain is 23 dB. The input return loss is better than 20 dB from 6.5 to 9.0 GHz. The core area of the LNA is 0.53 mm2. Simulated noise figure of the LNA is under 3.2 dB.  相似文献   

14.
A new technique to evaluate the quantization error of cascaded sigma-delta modulators in digital domain is presented. It avoids the complications associated with analog extraction of the quantization error in multistage noise shaping (MASH) modulators before feeding the error to the proceeding stage. Instead, the quantization error is estimated and cancelled out by adding a digital subtractor and by injecting a purely analog signal from the preceding stage to the next stage. In comparison to conventional MASH modulator structure, analog circuit requirements of the modulator are therefore relaxed, and the number of switched-capacitor digital-to-analog converters and the associated switching energy are lowered. In the absence of extra switching blocks, less flicker and thermal noise would be also injected into the circuit. Different implementations of MASH modulator are presented and analyzed based on the proposed digital quantization error extraction technique. Behavioral-level simulation results prove the mathematical equivalence of the proposed structures with successful MASH designs found in the literature, and confirm the effectiveness of the idea. For a ? 1.4 dB, 19.8 kHz input and an oversampling ratio of 16, a modified 1-V 20-MS/s 2 + 2 MASH modulator achieves a signal-to-noise-and-distortion ratio (SNDR) of 78 dB, when the input of the first quantizer is fed to the second stage. The second design based on digital extraction of quantization error achieves a 71 dB SNDR for a ? 8.0 dB, 19.8 kHz input, when the second stage is fed by the output of the first integrator.  相似文献   

15.
黄春平 《电声技术》2016,40(12):30-33
简要介绍了一款基于数字电位器max5389、既具有USB数字音频接口又具有模拟音频接口的音频控制电路.采用STC12C5052做为主控芯片,具有256阶的音量控制、声道选择、静音控制等功能;通过单独为单片机控制系统、显示系统,数字化音量控制系统、胆机提供电源;将数字地、模拟地分开等措施,使音频控制电路信噪比达到82 dB.  相似文献   

16.
An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-carrier distortion-is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic comparator input average voltage with the output average voltage. This easily causes total harmonic distortion figures in excess of 0.1-0.2%, inadequate for high-quality audio applications. Carrier distortion is shown to be minimized when the feedback system is designed to provide a triangular carrier (sliding) signal at the input of a hysteretic comparator. The proposed optimization method is experimentally proven in an audio power amplifier leading to THD figures that are comparable to the state of the art. Experimental hardware is a hysteretic SO bandpass current-mode-controlled single-ended audio power amplifier capable of 45 W into 8 Omega or 80 W into 4Omega from a plusmn34 V supply with less than 0.03% THD from 100 Hz to 6.7 kHz. Carrier distortion is shown to account for this limitation in THD performance.  相似文献   

17.
This paper presents a built-in-self-test (BIST) Σ-Δ ADC prototype. The BIST circuity uses the proposed modified controlled sine wave fitting (CSWF) procedure to calculate the signal power and the total-harmonic-distortion-and-noise power in time domain separately. Compared with conventional Fast Fourier Transform (FFT) analysis, neither complex CPU/DSP nor bulky memory is required. The added BIST circuitry is purely digital and the hardware overhead is as low as 11.9 K gates. A prototype comprising the second-order design-for-digital-testability Σ-Δ modulator chip and an FPGA board which implements the digital functions is used to demonstrate the effectiveness of the BIST design. Measurement results show that the SNDR difference between conventional FFT analysis and the proposed BIST design of the standard ??6 dBFS, 1 KHz tone test is only 0.3 dB. Furthermore, the tested dynamic range values by both methods are the same. The proposed BIST implementation achieves the advantages of compact hardware, high test accuracy, and the flexibility of adjusting the stimuli which are important features for BIST applications.  相似文献   

18.
This paper presents a new hybrid fault-tolerant architecture for robustness improvement of digital CMOS circuits and systems. It targets all kinds of errors in combinational part of logic circuits and thus, can be combined with advanced SEU protection techniques for sequential elements while reducing the power consumption. The proposed architecture combines different types of redundancies: information redundancy for error detection, temporal redundancy for soft error correction and hardware redundancy for hard error correction. Moreover, it uses a pseudo-dynamic comparator for SET and timing errors detection. Besides, the proposed method also aims to reduce power consumption of fault-tolerant architectures while keeping a comparable area overhead compared to existing solutions. Results on the largest ISCAS’85 and ITC’99 benchmark circuits show that our approach has an area cost of about 3 % to 6 % with a power consumption saving of about 33 % compared to TMR architectures.  相似文献   

19.
This article presents a low-phase noise quadrature voltage-controlled oscillator (QVCO) in which the re-filtering technique of the side-band noise is adopted. In the proposed QVCO, besides using re-filtering technique, the passive elements replaced the noisy and lossy active coupling devices. Therefore, due to the elimination of the associate noise sources of the active coupling devices and re-filtering of side-band noise of the circuit, the proposed QVCO shows an excellent phase-noise and FOM. The proposed QVCO was implemented and simulated in TSMC 0.18 μm RF-CMOS technology. The phase noise of the proposed QVCO at 3 MHz offset frequency from the 3 GHz center frequency is ?144 dBc/Hz, for a current consumption of 11.5 mA at a power supply of 1.8-V. Simulation results show the proposed QVCO can operate with power supply as low as 0.6 V. Monte–Carlo analyses for, 3% device mismatch and process variation, result in phase error lower than 0.8°. Generalizing the proposed coupling technique to several core VCOs very low-phase noise multiphase signals can be generated.  相似文献   

20.
A new redundant successive approximation register (SAR) ADC architecture with digital error correction is presented to avoid the comparator offset issue and subtraction operations. A 2-channel 12-bit 100 MS/s SAR ADCs based on the proposed architecture with voltage-controlled delay lines based time-domain comparator is designed in a 65 nm CMOS technology. Simulation results show that at a supply voltage of 1.2 V, the SAR ADC achieves a signal-to-noise-and-distortion ratio (SNDR) of 70.81 dB (11.47 ENOB), a spurious free dynamic range (SFDR) of 80.33 dB for a near Nyquist input at 100 MS/s, while dissipating 11 mW from a 1.2-V supply, giving a FOM of 38.8 fJ/Conversion-step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号