首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The most accurate boundary element formulation to deal with fracture mechanics problems is obtained with the implementation of the associated Green's function acting as the fundamental solution. Consequently, the range of applications of this formulation is dependent on the availability of the appropriate Green's function for actual crack geometry. Analytical Green's functions have been presented for a few single crack configurations in 2-D applications and require complex variable theory. This work extends the applicability of the formulation through the introduction of efficient numerical means of computing the Green's function components for single or multiple crack problems, of general geometry, including the implementation to 3-D problems as a future development. Also, the approach uses real variables only and well-established boundary integral equations.  相似文献   

2.
The boundary integral equation for the axisymmetric Laplace equation is solved by employing modified Galerkin weight functions. The alternative weights smooth out the singularity of the Green's function at the symmetry axis, and restore symmetry to the formulation. As a consequence, special treatment of the axis equations is avoided, and a symmetric‐Galerkin formulation would be possible. For the singular integration, the integrals containing a logarithmic singularity are converted to a non‐singular form and evaluated partially analytically and partially numerically. The modified weight functions, together with a boundary limit definition, also result in a simple algorithm for the post‐processing of the surface gradient. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

3.
The use of Green's functions has been considered a powerful technique in the solution of fracture mechanics problems by the boundary element method (BEM). Closed‐form expressions for Green's function components, however, have only been available for few simple 2‐D crack geometry applications and require complex variable theory. The present authors have recently introduced an alternative numerical procedure to compute the Green's function components that produced BEM results for 2‐D general geometry multiple crack problems, including static and dynamic applications. This technique is not restricted to 2‐D problems and the computational aspects of the 3‐D implementation of the numerical Green's function approach are now discussed, including examples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
The transient Green's function of the 2‐D Lamb's problem for the general case where point source and receiver are situated beneath the traction‐free surface is derived. The derivations are based on Laplace‐transform methods, utilizing the Cagniard–de Hoop inversion. The Green's function is purely algebraic without any integrals and is presented in a numerically applicable form for the first time. It is used to develop a Green's function BEM in which surface discretizations on the traction‐free boundary can be saved. The time convolution is performed numerically in an abstract complex plane. Hence, the respective integrals are regularized and only a few evaluations of the Green's function are required. This fast procedure has been applied for the first time. The Green's function BEM developed proved to be very accurate and efficient in comparison with analogue BEMs that employ the fundamental solution. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
An alternative scheme to compute the Green's function and its derivatives for three dimensional generally anisotropic elastic solids is presented in this paper. These items are essential in the formulation of the boundary element method (BEM); their evaluation has remained a subject of interest because of the mathematical complexity. The Green's function considered here is the one introduced by Ting and Lee [Q. J. Mech. Appl. Math. 1997; 50: 407–26] which is of real-variable, explicit form expressed in terms of Stroh's eigenvalues. It has received attention in BEM only quite recently. By taking advantage of the periodic nature of the spherical angles when it is expressed in the spherical coordinate system, it is proposed that this Green's function be represented by a double Fourier series. The Fourier coefficients are determined numerically only once for a given anisotropic material; this is independent of the number of field points in the BEM analysis. Derivatives of the Green's function can be performed by direct spatial differentiation of the Fourier series. The resulting formulations are more concise and simpler than those derived analytically in closed form in previous studies. Numerical examples are presented to demonstrate the veracity and superior efficiency of the scheme, particularly when the number of field points is very large, as is typically the case when analyzing practical three dimensional engineering problems.  相似文献   

6.
New computational forms are derived for Green's function of an exponentially graded elastic material in three dimensions. By suitably expanding a term in the defining inverse Fourier integral, the displacement tensor can be written as a relatively simple analytic term, plus a single double integral that must be evaluated numerically. The integration is over a fixed finite domain, the integrand involves only elementary functions, and only low‐order Gauss quadrature is required for an accurate answer. Moreover, it is expected that this approach will allow a far simpler procedure for obtaining the first and second‐order derivatives needed in a boundary integral analysis. The new Green's function expressions have been tested by comparing with results from an earlier algorithm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
A correspondence is made between the reciprocal relation for linear elliptic partial differential equations and the Riesz integral representation. The former relates the boundary distributions and appropriate normal fluxes of two arbitrary solutions, and the latter expresses a continuous linear functional in terms of an integral involving a representing function. When sufficient regularity conditions are met, the representing function is identified with the unknown boundary distribution. In principle, the representing function may be expressed in terms of the images of a complete set of orthonormal basis functions with known normal fluxes, as suggested by Kupradze [Kupradze VD. On the approximate solution of problems in mathematical physics. Russ Math Surv 1967; 22: 59–107]; in practice, the representing function is computed by solving integral equations using boundary element methods. The basic procedure involves expressing the representing function in terms of finite-element or other basis functions, and requiring the satisfaction of the reciprocal relationship with a suitable set of test functions such as Green's functions and their dipoles. When the singular points are placed at the boundary, we obtain the standard boundary integral equation method. When the singular points are placed outside the domain of solution, we obtain a system of functional equations and associated class of desingularized boundary integral methods. When sufficient regularity conditions are met and the test functions comprise a complete set, then in the limit of infinite discretization the numerical solution converges to the unknown boundary distribution. An overview of formulations is presented with reference to Laplace's equation in two dimensions. Numerical experimentation shows that, in general, the solution obtained by desingularized methods becomes increasingly less accurate as the singular points of Green's functions move farther away from the boundary, but the loss of accuracy is significant only when the exact solution shows pronounced variations. Exceptions occur when the integral equation does not have a unique solution. In contrast, and in agreement with previous findings, the condition number of the linear system increases rapidly with the distance of the singular points from the boundary, to the extent that a dependable solution cannot be obtained when the singularities are located even a moderate distance away from the boundary. The desingularized formulation based on Green's function dipoles is superior in accuracy and reliability to the one that uses Green functions. The implementation of the method to the equations of elastostatics and Stokes flow are also discussed.  相似文献   

8.
Effective formulas for computing Green's function of an exponentially graded three‐dimensional material have been derived in previous work. The expansion approach for evaluating Green's function has been extended to develop corresponding algorithms for its first‐ and second‐order derivatives. The resulting formulas are again obtained as a relatively simple analytic term plus a single double integral, the integrand involving only elementary functions. A primary benefit of the expansion procedure is the ability to compute the second‐order derivatives needed for fracture analysis. Moreover, as all singular terms in this hypersingular kernel are contained in the analytic expression, these expressions are readily implemented in a boundary integral equation calculation. The computational formulas for the first derivative are tested by comparing with results of finite difference approximations involving Green's function. In turn, the second derivatives are then validated by comparing with finite difference quotients using the first derivatives. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

9.
Part 1 of this paper reports on the formulation of an advanced boundary—integral equation model for fracture mechanics analysis of cracked plates, subject to elastoplastic behaviour or other, related body force problems. The basis of this formulation contrasts with other BIE elastoplastic formulations in the use of the Green's function for an infinite plane containing a stress free crack. This Green's function formulation assures that the total elastic strain field for the crack problem is accurately imbedded in the numerical model. The second part of this paper reports on the numerical implementation of this algorithm, as currently developed. The anelastic strain field (residual strains, thermal strains, plastic strains, etc.) is approximated as piecewise constant, while the boundary data is modelled with linear interpolations. An iteration solution scheme is adopted which eliminates the need for recalculation of the BIE matrices. The stability and accuracy of the algorithm are demonstrated for an uncracked, notch geometry, and comparison to finite element results is made for the centre-cracked panel. The data shows that even the crude plastic strain model applied is capable of excellent resolution of crack tip plastic behaviour.  相似文献   

10.
In this article, a non‐singular formulation of the boundary integral equation is developed to solve smooth and non‐smooth interior potential problems in two dimensions. The subtracting and adding‐back technique is used to regularize the singularity of Green's function and to simplify the calculation of the normal derivative of Green's function. After that, a global numerical integration is directly applied at the boundary, and those integration points are also taken as collocation points to simplify the algorithm of computation. The result indicates that this simple method gives the convergence speed of order N ?3 in the smooth boundary cases for both Dirichlet and mix‐type problems. For the non‐smooth cases, the convergence speed drops at O(N ?1/2) for the Dirichlet problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The purpose of this work is to demonstrate the application of the self‐regular formulation strategy using Green's identity (potential‐BIE) and its gradient form (flux‐BIE) for Laplace's equation. Self‐regular formulations lead to highly effective BEM algorithms that utilize standard conforming boundary elements and low‐order Gaussian integrations. Both formulations are discussed and implemented for two‐dimensional potential problems, and numerical results are presented. Potential results show that the use of quartic interpolations is required for the flux‐BIE to show comparable accuracy to the potential‐BIE using quadratic interpolations. On the other hand, flux error results in the potential‐BIE implementation can be dominated by the numerical integration of the logarithmic kernel of the remaining weakly singular integral. Accuracy of these flux results does not improve beyond a certain level when using standard quadrature together with a special transformation, but when an alternative logarithmic quadrature scheme is used these errors are shown to reduce abruptly, and the flux results converge monotonically to the exact answer. In the flux‐BIE implementation, where all integrals are regularized, flux results accuracy improves systematically, even with some oscillations, when refining the mesh or increasing the order of the interpolating function. The flux‐BIE approach presents a great numerical sensitivity to the mesh generation scheme and refinement. Accurate results for the potential and the flux were obtained for coarse‐graded meshes in which the rate of change of the tangential derivative of the potential was better approximated. This numerical sensitivity and the need for graded meshes were not found in the elasticity problem for which self‐regular formulations have also been developed using a similar approach. Logarithmic quadrature to evaluate the weakly singular integral is implemented in the self‐regular potential‐BIE, showing that the magnitude of the error is dependent only on the standard Gauss integration of the regularized integral, but not on this logarithmic quadrature of the weakly singular integral. The self‐regular potential‐BIE is compared with the standard (CPV) formulation, showing the equivalence between these formulations. The self‐regular BIE formulations and computational algorithms are established as robust alternatives to singular BIE formulations for potential problems. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

12.
In the direct boundary integral equation method, boundary-value problems are reduced to integral equations by an application of Green's theorem to the unknown function and a fundamental solution (Green's function). Discretization of the integral equation then leads to a boundary element method. This approach was pioneered by Jaswon and his students in the early 1960s. Jaswon's work is reviewed together with his influence on later workers.  相似文献   

13.
It is well known that employing a Green's function which satisfies the prescribed conditions on a part of the boundary is advantageous for boundary integral calculations. In this paper, it is shown that an approximate Green's function, one in which the known data is nearly reproduced, can also be highly beneficial in implementations of the boundary-element method. This approximate Green's function approach is developed herein for solving the Laplace equation, and applied to the modeling of void dynamics under electromigration conditions in metallic thin-film interconnects used in integrated circuits.  相似文献   

14.
Thermomagnetoelectroelastic problems for various defects embedded in an infinite matrix are considered in this paper. Using Stroh's formalism, conformal mapping, and perturbation technique, Green's functions are obtained in closed form for a defect in an infinite magnetoelectroelastic solid induced by the thermal analog of a line temperature discontinuity and a line heat source. The defect may be of an elliptic hole or a Griffith crack, a half-plane boundary, a bimaterial interface, or a rigid inclusion. These Green's functions satisfy the relevant boundary or interface conditions. The proposed Green's functions can be used to establish boundary element formulation and to analyzing fracture behaviour due to the defects mentioned above.  相似文献   

15.
A computational model based on the numerical Green's function (NGF) and the dual reciprocity boundary element method (DR-BEM) is presented for the study of elastodynamic fracture mechanics problems. The numerical Green's function, corresponding to an embedded crack within the infinite medium, is introduced into a boundary element formulation, as the fundamental solution, to calculate the unknown external boundary displacements and tractions and in post-processing determine the crack opening displacements (COD). The domain inertial integral present in the elastodynamic equation is transformed into a boundary integral one by the use of the dual reciprocity technique. The dynamic stress intensity factors (SIF), computed through crack opening displacement values, are obtained for several numerical examples, indicating a good agreement with existing solutions.  相似文献   

16.
A simple idea is proposed to solve boundary value problems for elastoplastic solids via boundary elements, namely, to use the Green's functions corresponding to both the loading and unloading branches of the tangent constitutive operator to solve for plastic and elastic regions, respectively. In this way, domain integrals are completely avoided in the boundary integral equations. Though a discretization of the region where plastic flow occurs still remains necessary to account for the inhomogeneity of plastic deformation, the elastoplastic analysis reduces, in essence, to a straightforward adaptation of techniques valid for anisotropic linear elastic constitutive equations (the loading branch of the elastoplastic constitutive operator may be viewed formally as a type of anisotropic elastic law). Numerical examples, using J2‐flow theory with linear hardening, demonstrate that the proposed method retains all the advantages related to boundary element formulations, is stable and performs well. The method presented is for simplicity developed for the associative flow rule; however, a full derivation of Green's function and boundary integral equations is also given for the general case of non‐associative flow rule. It is shown that in the non‐associative case, a domain integral unavoidably arises in the formulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The problem of interactions between an inclusion and multiple cracks in a thermopiezoelectric solid is considered by boundary element method (BEM) in this paper. First of all, a BEM for the crack–inclusion problem is developed by way of potential variational principle, the concept of dislocation, and Green's function. In the BE model, the continuity condition of the interface between inclusion and matrix is satisfied, a priori, by the Green's function, and not involved in the boundary element equations. This is then followed by expressing the stress and electric displacement (SED) and elastic displacements and electric potential (EDEP) in terms of polynomials of complex variables ξt and ξk in the transformed ξ‐plane in order to simulate SED intensity factors by the BEM. The least‐squares method incorporating the BE formulation can, then, be used to calculate SED intensity factors directly. Numerical results for a piezoelectric plate with one inclusion and a crack are presented to illustrate the application of the proposed formulation. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A stochastic boundary element method (SBEM) is developed in this work for evaluating the dynamic response of underground openings excited by seismically induced, horizontally polarized shear waves under steady-state conditions. The surrounding geological medium is viewed as an elastic continuum exhibiting large randomness in its mechanical properties, which implies that the wave number of the propagating signal is a function of a random variable. Suitable Green's functions are proposed and used within the context of the SBEM formulation. More specifically, a series expansion for the Green's functions is employed, where the basis functions are orthogonal polynomials of a random argument (polynomial chaos). These are subsequently incorporated in the SBEM formulation, which employs the usual quadratic, isoparametric line elements for modeling the surfaces of the problem in question. Finally, this formulation is used for the solution of a few problems of engineering interest involving buried cavities (tunnels). We note that the present approach departs from earlier boundary element derivations based on perturbations, which are valid for ‘small’ amounts of randomness in the elastic continuum.  相似文献   

19.
The evaluation of volume integrals that arise in boundary integral formulations for non‐homogeneous problems was considered. Using the “Galerkin vector” to represent the Green's function, the volume integral was decomposed into a boundary integral, together with a volume integral wherein the source function was everywhere zero on the boundary. This new volume integral can be evaluated using a regular grid of cells covering the domain, with all cell integrals, including partial cells at the boundary, evaluated by simple linear interpolation of vertex values. For grid vertices that lie close to the boundary, the near‐singular integrals were handled by partial analytic integration. The method employed a Galerkin approximation and was presented in terms of the three‐dimensional Poisson problem. An axisymmetric formulation was also presented, and in this setting, the solution of a nonlinear problem was considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper we give the theoretical foundation for a dislocation and point-force-based approach to the special Green's function boundary element method and formulate, as an example, the special Green's function boundary element method for elliptic hole and crack problems. The crack is treated as a particular case of the elliptic hole. We adopt a physical interpretation of Somigliana's identity and formulate the boundary element method in terms of distributions of point forces and dislocation dipoles in the infinite domain with an elliptic hole. There is no need to model the hole by the boundary elements since the traction free boundary condition there for the point force and the dislocation dipole is automatically satisfied. The Green's functions are derived following the Muskhelishvili complex variable formalism and the boundary element method is formulated using complex variables. All the boundary integrals, including the formula for the stress intensity factor for the crack, are evaluated analytically to give a simple yet accurate special Green's function boundary element method. The numerical results obtained for the stress concentration and intensity factors are extremely accurate. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号