首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The propagation of circularly crested waves in a homogeneous, transversely isotropic, thermally conducting plate bordered with layers of inviscid liquid or half space of inviscid liquid on both sides is investigated in the context of conventional coupled thermoelasticity, Lord-Shulman and Green-Lindsay theories of thermoelasticity. Secular equations for circular homogeneous transversely isotropic plate in closed form and isolated mathematical conditions for symmetric and antisymmetric wave modes in completely separate terms are derived. The results for isotropic materials and uncoupled theories of thermoelasticity have been obtained as particular cases. The special cases such as short wavelength waves, thin plate waves and leaky Lamb waves of the secular equation are also deduced and discussed. The amplitudes of displacement components and temperature change have also been computed and studied. Finally, the numerical solution is carried out for transversely isotropic circular plate of cobalt material bordered with water. The dispersion curves for symmetric and antisymmetric wave modes, attenuation coefficient and amplitudes of displacement and temperature change in case of fundamental symmetric (S0) and skew symmetric (A0) modes are presented in order to illustrate and compare the theoretical results. The analytical and numerical results are found to be in close agreement.  相似文献   

2.
In this paper the propagation of plane and circular crested viscothermoelastic waves in a homogeneous isotropic, Kelvin-Voigt type viscoelastic thermally conducting, plate sandwiched between inviscid liquid layers is investigated in the context of classical and non-classical theories of thermoelasticity. The secular equations for the symmetric and skew-symmetric modes of plane and circular crested waves are derived in closed form and isolated mathematical conditions. It is noticed that the motion for both the plane and cylindrical waves in plates is governed by Rayleigh-Lamb-type secular equations. The secular equations for thin plate and short wave length waves are also obtained and discussed. The results in the absence of fluid loading, coupled and uncoupled theories of thermoelasticity have been obtained as particular cases from the derived secular equations. The dispersion curves, attenuation profiles and specific loss in case of symmetric and skew-symmetric wave modes are also presented graphically for a polymethyl methacrylate material plate under fluid loadings. The effect of dissipation due to viscosity is noticed to be quite significant and clearly visible from various curves in the graphs.  相似文献   

3.
The propagation of magnetic-thermoelastic plane wave in an initially unstressed, homogeneous isotropic, conducting plate under uniform static magnetic field has been investigated. The generalized theory of thermoelasticity is employed, by assuming electrical behaviour as quasi-static and the mechanical behaviour as dynamic, to study the problem. The secular equations for both symmetric and skew-symmetric waves have been obtained. The magneto-elastic shear horizontal (SH) mode of wave propagation gets decoupled from rest of the motion and it is not influenced by thermal variations and thermal relaxation times. At short wavelength limits, the secular equations for symmetric and skew-symmetric modes reduce to Rayleigh surface wave frequency equation, because a finite thickness plate in such a situation behaves like a semi-infinite medium. Thin plate results are also deduced at the end. Dispersion curves are represented graphically for various modes of wave propagation in different theories of thermoelasticity. The amplitudes of displacement, perturbed magnetic field and temperature change are also obtained analytically and computed numerically. The result in case of elastokinetics, magneto-elasticity and coupled magneto-elasticity has also been deduced as special cases at appropriate stages of this work.  相似文献   

4.
Analysis for the propagation of thermoelastic waves in a homogeneous, transversely isotropic, thermally conducting plate bordered with layers of inviscid liquid or half space of inviscid liquid on both sides, is investigated in the context of coupled theory of thermoelasticity. Secular equations for homogeneous transversely isotropic plate in closed form and isolated mathematical conditions for symmetric and anti-symmetric wave modes in completely separate terms are derived. The results for isotropic materials and uncoupled theories of thermoelasticity have been obtained as particular cases. It is shown that the purely transverse motion (SH mode), which is not affected by thermal variations, gets decoupled from rest of the motion of wave propagation and occurs along an in-plane axis of symmetry. The special cases, such as short wavelength waves and thin plate waves of the secular equations are also discussed. The secular equations for leaky Lamb waves are also obtained and deduced. The amplitudes of displacement components and temperature change have also been computed and studied. Finally, the numerical solution is carried out for transversely isotropic plate of zinc material bordered with water. The dispersion curves for symmetric and anti-symmetric wave modes, attenuation coefficient and amplitudes of displacement and temperature change in case of fundamental symmetric (S0) and skew symmetric (A0) modes are presented in order to illustrate and compare the theoretical results. The theory and numerical computations are found to be in close agreement.  相似文献   

5.
Summary Plane waves in a linear, homogeneous and transversely isotropic thermoelastic body are discussed on the basis of a unified system of governing equations. It is found that the motion influenced by the thermal field takes place in three coupled modes. Explicit expressions for the phase velocities and attenuation coefficients of these modes in the cases of high and low frequencies are obtained. Results valid in the conventional and generalized thermoelasticity theories are recovered as particular cases. Comparison with the corresponding results obtained in earlier works is made.  相似文献   

6.
The elastodynamic behavior of waves in a thermo-microstretch elastic homogeneous isotropic plate bordered with layers of inviscid liquid on both sides subjected to stress-free thermally insulated and isothermal conditions is investigated in the context of Lord and Shulman and Green and Lindsay theories of thermoelasticity. The mathematical model has been simplified by using the Helmholtz decomposition technique, and the frequency equations for different mechanical situations are obtained and discussed. The special cases such as short wavelength waves and regions of the secular equations are also discussed. Finally, the numerical solution is carried out for a magnesium crystal composite material plate bordered with water. The dispersion curves, attenuation coefficients, amplitudes of dilatation, microrotation, microstretch, and temperature distribution for the symmetric and skew-symmetric wave modes are presented graphically.  相似文献   

7.
In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an infinitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic expressions in symmetric and anti-symmetric vibration for short as well as long waves are obtained in different regions of phase velocities. It is found that results agree with that of the existing results predicted by Sharma and Eringen in the context of various theories of classical as well as micropolar thermoelasticity.  相似文献   

8.
The article deals with the propagation of axial symmetric cylindrical surface waves in a cylindrical bore through a micropolar thermoelastic medium of infinite extent possessing cubic symmetry. The theories of generalized thermoelasticity developed by Lord and Shulman and Green and Lindsay are used to study the problem. The frequency equations, connecting the phase velocity with the wave number, radius of bore, and other material parameters for empty and liquid-filled bores are derived. Some special cases have been deduced. The numerical results obtained have been illustrated graphically to understand the behavior of the phase velocity and attenuation coefficient versus the wave number.  相似文献   

9.
The propagation of free vibrations in a microstretch thermoelastic homogeneous isotropic plate subjected to stress-free thermally insulated and isothermal conditions is investigated in the context of conventional coupled thermoelasticity (CT) and Green and Lindsay (G—L) theories of thermoelasticity. The secular equations for the microstretch thermoelastic plate in closed form for symmetric and skew-symmetric wave mode propagation in completely separate terms are derived. At short wavelength limits, the secular equations for both modes in a stress-free thermally insulated and isothermal homogeneous isotropic microstretch thermoelastic plate reduce to the Rayleigh surface wave frequency equation. The results for symmetric and skew-symmetric wave modes are computed numerically and presented graphically. The theory and numerical computations are found to be in close agreement. Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 82, No. 1, pp. 36–46, January–February, 2009.  相似文献   

10.
The coupling of electromagnetic and elastic waves is considered from the standpoint of linear elasticity and a linearized electromagnetic theory. The problem of plane waves traveling through a uniform magnetostatic field is considered and couplings of the waves are studied. An investigation of the same problem for a uniform electrostatic field shows that the usual plane waves propagate without any change in their phase velocities but that the mechanical waves are accompanied by small fluctuating electromagnetic fields. The problem of the vibration of a free infinite elastic plate in a large magnetostatic field is examined under the assumption that the resulting electromagnetic fields are quasistationary. Frequency equations are obtained for both symmetric and antisymmetric vibrations and the damping caused by the field for both the first two symmetric and antisymmetric modes is obtained as a linear correction to the usual free plate frequencies.  相似文献   

11.
The objective of this work is to provide a rigorous analysis of thermoelastic ultrasonic waves in transversely isotropic plates. Characteristic features such as dispersion curves of thermoelastic waves of plates are investigated and the influence of coupling in the heat equation on these features is critically examined. If the propagation of the waves is along the axis of symmetry of the plate, then it is possible to decouple the antisymmetric modes from the symmetric ones. This is conveniently done in approximate theories by retaining and omitting various terms in the expansions for the displacement and temperature. In this work, it is assumed that the wave propagation is along the axis of symmetry of an infinite anisotropic plate. Hence, extensional (symmetric) modes can be investigated apart from the antisymmetric modes. Displacement and temperature are expanded across the thickness of the plate using Legendre polynomials. Obviously, such a theory best fits those applications where a low frequency pulse is employed. Further, keeping only the leading terms in the expansion of displacement and temperature gives rise to a lower order theory, which predicts well the correct behavior of symmetric modes in relatively smaller frequency range. Results also show that the effect of coupling in the heat equation is insignificant for thermoelastic waves and can be ignored.  相似文献   

12.
The theory of coupled thermoelasticity for a micropolar mixture of porous media (Eringen AC, J Appl Phys 94:909, 2003) is generalized in the context of Lord and Shulman and Green and Lindsay theories of generalized thermoelasticity. The governing equations of generalized thermoelasticity of a micropolar mixture of porous media are solved to show the existence of three coupled longitudinal displacement waves, two coupled longitudinal microrotational waves, and six coupled transverse waves, which attenuate and are dispersive in nature.  相似文献   

13.
A unified generalized thermoelasticity solution for the transient thermal shock problem in the context of three different generalized theories of the coupled thermoelasticity, namely: the extended thermoelasticity, the temperature-rate-dependent thermoelasticity and the thermoelasticity without energy dissipation is proposed in this paper. First, a unified form of the governing equations is presented by introducing the unifier parameters. Second, the unified equations are derived for the thermoelastic problem of the isotropic and homogeneous materials subjected to a transient thermal shock. The Laplace transform and inverse transform are used to solve these equations, and the unified analytical solutions in the transform domain and the short-time approximated solutions in the time domain of displacement, temperature and stresses are obtained. Finally, the numerical results for copper material are displayed in graphical forms to compare the characteristic features of the above three generalized theories for dealing with the transient thermal shock problem.  相似文献   

14.
In view of the increased usage of anisotropic materials in the development of advanced engineering materials such as fibers and composite and other multilayered, propagation of thermoelastic waves in arbitrary anisotropic layered plate is investigated in the context of the generalized theory of thermoelasticity. Beginning with a formal analysis of waves in a heat-conducting N-layered plate of an arbitrary anisotropic media, the dispersion relations of thermoelastic waves are obtained by invoking continuity at the interface and boundary conditions on the surfaces of layered plate. The calculation is then carried forward for more specialized case of a monoclinic layered plate. The obtained solutions which can be used for material systems of higher symmetry (orthotropic, transversely isotropic, cubic, and isotropic) are contained implicitly in our analysis. The case of normal incidence is also considered separately. Some special cases have also been deduced and discussed. We also demonstrate that the particle motions for SH modes decouple from rest of the motion, and are not influenced by thermal variations if the propagation occurs along an in-plane axis of symmetry. The results of the strain energy distribution in generalized thermoelasticity are useful in determining the arrangements of the layer in thermal environment.  相似文献   

15.
A formulation of the boundary integral equation method for generalized linear micro-polar thermoviscoelasticity is given. Fundamental solutions, in Laplace transform domain, of the corresponding differential equations are obtained. The initial, mixed boundary value problem is considered as an example illustrating the BIE formulation. The results are applicable to the generalized thermoelasticity theories: Lord-Shulman with one relaxation time, Green-Lindsay with two relaxation times, Green-Naghdi theories, and Chandrasekharaiah and Tzou with dual-phase lag, as well as to the dynamic coupled theory. The cases of generalized linear micro-polar thermoviscoelasticity of Kelvin-Voigt model, generalized linear thermoviscoelasticity and generalized thermoelasticity can be obtained from the given results.  相似文献   

16.
Selective modes of guided Lamb waves are generated in a laminated aluminum plate for damage detection using a broadband piezoelectric transducer structured with a rigid electrode. Appropriate excitation frequencies and modes for inspection are selected from theoretical and experimental dispersion curves. Dispersion curves are obtained experimentally by short time Fourier transform of the transient signals. Sensitivity of antisymmetric and symmetric modes for delamination detection are investigated. The antisymmetric mode is found to be more reliable for delamination detection. Unlike other studies, in which the attenuation of the propagating waves is related to the extent of the internal damage, in this investigation, the changes in the time-of-flight (TOF) of guided Lamb waves are related to the damage progression. The mode conversion phenomenon of Lamb waves during progressive delamination is investigated. Close matching between the theoretical and experimentally derived dispersion curves and TOF assures the reliability of the results presented here.  相似文献   

17.
代海涛  程伟  李明志 《振动与冲击》2007,26(12):79-83,116
根据Hamilton原理建立了三维压电压磁动力学耦合系统的Hamilton对偶体系,将经典的弹性力学一类变量问题转化为二类变量,建立了Hamilton正则方程组,研究了功能梯度电磁材料(FGMM)板/管内的弹性导波的频散特性及波结构特征。结果表明:(1)压电效应提高了Lamb波的频率和波速,而磁效应则相反,压电效应对波动的影响远大于磁效应;它们而对SH波没有影响(厚度方向极化)。(2)短路及断路电学边界条件对SH波不发生任何影响(厚度方向极化),而短路对Lamb波的频率和波速有不同程度的降低(相同波数下)。(3)在波结构上,对平板而言,所谓的“对称”和“反对称”Lamb波由于材料的梯度特性而变得不再严格的关于中心线对称或反对称。对管而言,由于材料的非均匀分布导致存轴对称栩转波模态中出现了横截面翘曲现象.轴对称纵向波也出现厚度剪切应力。  相似文献   

18.
The Green and Naghdi theory of thermoelasticity is applied to study plane-wave propagation in an elastic solid with thermo-diffusion. The governing equations of an elastic solid with generalized thermo-diffusion are solved to show the existence of three coupled longitudinal waves and a shear vertical (SV) wave in a two-dimensional model of the solid with thermo-diffusion. The reflection of plane waves from a thermally insulated stress-free surface of an elastic solid with thermo-diffusion is also studied. A non-homogeneous system of four equations in reflection coefficients is obtained. The speeds of the plane waves are computed numerically and plotted against frequency for a particular range. The complex absolute values of the reflection coefficients of all reflected waves are computed numerically and plotted against the angle of incidence of the striking wave at the free surface. The effects of diffusion parameters are shown graphically for speeds and reflection coefficients of plane waves.  相似文献   

19.
A simple method for measuring Lamb wave phase velocities is used to obtain data for the lowest symmetric Lamb mode (S 0) and the lowest antisymmetric Lamb mode (A 0) for composite laminates. The experimental data are compared with the results from an approximate theory for the lowest Lamb modes in the low frequency, long wavelength region for a unidirectional laminate, a symmetric cross-ply laminate, a symmetric quasi-isotropic laminate and an aluminum plate. There is good correlation between the data and the results from the approximate theory, which suggests that the approximate theory works well in the low frequency, long wavelength region in these cases. Also, this experimental procedure of measuring phase velocities of the lowest symmetric and antisymmetric modes can be used to characterize laminated composite plates with and without damage since each material and stacking sequence gives distinct lowest symmetric and antisymmetric curves.  相似文献   

20.
In this article, the propagation of thermoelastic waves in orthotropic spherical curved plates subjected to stress-free, isothermal boundary conditions is investigated in the context of the Green–Naghdi (GN) generalized thermoelastic theory (without energy dissipation). The theoretical formulation is based on the linear GN thermoelastic theory. The coupled wave equation and heat conduction equation expressed by the displacement and temperature are obtained. By the Legendre orthogonal polynomial series expansion approach, the coupled controlling equations are solved. The convergence of the method is demonstrated through a numerical example. The dispersion curves of thermal modes and elastic modes are illustrated simultaneously. Dispersion curves of the corresponding purely elastic spherical plate are also shown to analyze the influence of thermoelasticity on elastic modes. The displacement, temperature and stress distributions of both elastic modes and thermal modes are calculated to show their differences. A thermoelastic spherical plate with a different ratio of radius to thickness is considered to show the influence of the ratio on the characteristics of thermoelastic waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号