首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 256 毫秒
1.
Abstract-Brain-computer interface (BCI) can help the deformity person finish some basic activities. In this paper, we concern some critical aspects of SSVEP based BCI, including stimulator selection, method of SSVEP extracting in a short time, stimulating frequency selection, and signal electrode selection. The conclusion is that the stimulator type should be based on the complexity of the BCI system, the method based on wavelet analysis is more valid than the power spectrum method in extracting the SSVEP in a short period, and the selections of stimulating frequency and electrode are important in designing a BCI system. These contents are meaningful for implementing a real SSVEP-based BCI.  相似文献   

2.
The study of robot animals based on brain-computer interface (BCI) technology is an important field in robots and neuroscience at present. In this paper, the development status at home and abroad of the motion control of robot based on BCI and principle of robot animals are introduced, then a new animals' behavior control method by photostimulation is presented. At last, the application prospect is provided.  相似文献   

3.
Functional magnetic resonance imaging (fMRI) is a new tool for brain-computer interface (BCI). This paper presents an overview to fMRI-BCI. Our attention is mainly put on the methods of signal acquisition, signal preprocessing, and signal analysis of basic fMRI-BCI structure. The available softwares and the applications of fMRI-BCI are briefly introduced. At last, we suggest focusing on some technologies to make fMRI-BCI more perfect.  相似文献   

4.
Abstract-The development of asynchronous brain-computer interface (BCI) based on motor imagery (M1) poses the research in algorithms for detecting the nontask states (i.e., idle state) and the design of continuous classifiers that classify continuously incoming electroencephalogram (EEG) samples. An algorithm is proposed in this paper which integrates two two-class classifiers to detect idle state and utilizes a sliding window to achieve continuous outputs. The common spatial pattern (CSP) algorithm is used to extract features of EEG signals and the linear support vector machine (SVM) is utilized to serve as classifier. The algorithm is applied on dataset IVb of BCI competition Ⅲ, with a resulting mean square error of 0.66. The result indicates that the proposed algorithm is feasible in the first step of the development of asynchronous systems.  相似文献   

5.
As a non-invasive neurophysiologieal index for brain-computer interface (BCI), electroencephalogram (EEG) attracts much attention at present. In order to have a portable BCI, a simple and efficient pre-amplifier is crucial in practice. In this work, a preamplifier based on the characteristics of EEG signals is designed, which consists of a highly symmetrical input stage, low-pass filter, 50 Hz notch filter and a post amplifier. A prototype of this EEG module is fabricated and EEG data are obtained through an actual experiment. The results demonstrate that the EEG preamplifier will be a promising unit for BCI in the future.  相似文献   

6.
Abstract-Common spatial pattern (CSP) algorithm is a successful tool in feature estimate of brain-computer interface (BCI). However, CSP is sensitive to outlier and may result in poor outcomes since it is based on pooling the covariance matrices of trials. In this paper, we propose a simple yet effective approach, named common spatial pattern ensemble (CSPE) classifier, to improve CSP performance. Through division of recording channels, multiple CSP filters are constructed. By projection, log-operation, and subtraction on the original signal, an ensemble classifier, majority voting, is achieved and outlier contaminations are alleviated. Experiment results demonstrate that the proposed CSPE classifier is robust to various artifacts and can achieve an average accuracy of 83.02%.  相似文献   

7.
Abstract-A Laplacian support vector machine (LapSVM) algorithm, a semi-supervised learning based on manifold, is introduced to brain-computer interface (BCI) to raise the classification precision and reduce the subjects' training complexity. The data are collected from three subjects in a three-task mental imagery experiment. LapSVM and transductive SVM (TSVM) are trained with a few labeled samples and a large number of unlabeled samples. The results confirm that LapSVM has a much better classification than TSVM.  相似文献   

8.
Abstract-Two probabilistic methods are extended to research multi-class motor imagery of brain-computer interface (BCI): support vector machine (SVM) with posteriori probability (PSVM) and Bayesian linear discriminant analysis with probabilistic output (PBLDA). A comparative evaluation of these two methods is conducted. The results shows that: 1) probabilistie information can improve the performance of BCI for subjects with high kappa coefficient, and 2) PSVM usually results in a stable kappa coefficient whereas PBLDA is more efficient in estimating the model parameters.  相似文献   

9.
Abstract-A brain-computer interface (BCI) real- time system based on motor imagery translates the user's motor intention into a real-time control signal for peripheral equipments. A key problem to be solved for practical applications is real-time data collection and processing. In this paper, a real-time BCI system is implemented on computer with electroencephalogram amplifier. In our implementation, the on-line voting method is adopted for feedback control strategy, and the voting results are used to control the cursor horizontal movement. Three subjects take part in the experiment. The results indicate that the best accuracy is 90%.  相似文献   

10.
Electroencephalogram (EEG) provides a window for the activity of the human brain. As a novel form of the brain-computer interface (BCI), the online/offline EEG data may be interpreted through its auditory representation which can be considered as a specific tool in EEG monitoring and analysis. In this work, after a comprehensive comparison of the various designs of brainwave music generations, a waveform event mapping system for music display in real time-- the Chengdu Brainwave Music (CBM) is proposed, which is a special on-line BCI system. In CBM, the user datagram protocol (UDP) is adopted to transport EEG data from the recorder to a music generator. The CBM could possibly be used as an audio feedback tool in BCI, or a monitoring tool in clinic EEG, and a subject specified music therapy method.  相似文献   

11.
脑计算机接口(BCI)技术的研究是近几年才发展起来的一个具有学科交叉特点的前沿探索领域,其目的是实现脑与计算机设备的直接通讯;国际脑计算机接口竞赛由BCI研究领域的主要学术团体联合发起,旨在征集和检验新的BCI实现思路及相关数据处理算法,吸引和鼓励不同领域的研究者参与BCI研究.本文简要阐述了脑计算机接口的概念和发展情况,分析了历届BCI竞赛的设置和开展情况,最后详细介绍了我们的参赛经验和一些体会,供感兴趣的指导教师和研究生参考.  相似文献   

12.
Brain-computer interface (BCI) can help the deformity person finish some basic activities. In this paper, we concern some critical aspects of SSVEP based BCI, including stimulator selection, method of SSVEP extracting in a short time, stimulating frequency selection, and signal electrode selection. The conclusion is that the stimulator type should be based on the complexity of the BCI system, the method based on wavelet analysis is more valid than the power spectrum method in extracting the SSVEP in a short period, and the selections of stimulating frequency and electrode are important in designing a BCI system. These contents are meaningful for implementing a real SSVEP-based BCI.  相似文献   

13.
BCI2000: a general-purpose brain-computer interface (BCI) system   总被引:1,自引:0,他引:1  
Many laboratories have begun to develop brain-computer interface (BCI) systems that provide communication and control capabilities to people with severe motor disabilities. Further progress and realization of practical applications depends on systematic evaluations and comparisons of different brain signals, recording methods, processing algorithms, output formats, and operating protocols. However, the typical BCI system is designed specifically for one particular BCI method and is, therefore, not suited to the systematic studies that are essential for continued progress. In response to this problem, we have developed a documented general-purpose BCI research and development platform called BCI2000. BCI2000 can incorporate alone or in combination any brain signals, signal processing methods, output devices, and operating protocols. This report is intended to describe to investigators, biomedical engineers, and computer scientists the concepts that the BC12000 system is based upon and gives examples of successful BCI implementations using this system. To date, we have used BCI2000 to create BCI systems for a variety of brain signals, processing methods, and applications. The data show that these systems function well in online operation and that BCI2000 satisfies the stringent real-time requirements of BCI systems. By substantially reducing labor and cost, BCI2000 facilitates the implementation of different BCI systems and other psychophysiological experiments. It is available with full documentation and free of charge for research or educational purposes and is currently being used in a variety of studies by many research groups.  相似文献   

14.
A new way to improve the classification rate of an EEG-based brain-computer interface (BCI) could be to reconstruct the brain sources of EEG and to apply BCI methods to these derived sources instead of raw measured electrode potentials. EEG source reconstruction methods are based on electrophysiological information that could improve the discrimination between BCI tasks. In this paper, we present an EEG source reconstruction method for BCI. The results are compared with results from raw electrode potentials to enable direct evaluation of the method. Features are based on frequency power change and Bereitschaft potential. The features are ranked with mutual information before being fed to a proximal support vector machine. The dataset IV of the BCI competition II and data from four subjects serve as test data. Results show that the EEG inverse solution improves the classification rate and can lead to results comparable to the best currently known methods.  相似文献   

15.
A new way to improve the classification rate of an EEG-based brain-computer interface (BCI) could be to reconstruct the brain sources of EEG and to apply BCI methods to these derived sources instead of raw measured electrode potentials. EEG source reconstruction methods are based on electrophysiological information that could improve the discrimination between BCI tasks. In this paper, we present an EEG source reconstruction method for BCI. The results are compared with results from raw electrode potentials to enable direct evaluation of the method. Features are based on frequency power change and Bereitschaft potential. The features are ranked with mutual information before being fed to a proximal support vector machine. The dataset IV of the BCI competition II and data from four subjects serve as test data. Results show that the EEG inverse solution improves the classification rate and can lead to results comparable to the best currently known methods.  相似文献   

16.
A viable fully on-line adaptive brain computer interface (BCI) is introduced. On-line experiments with nine naive and able-bodied subjects were carried out using a continuously adaptive BCI system. The data were analyzed and the viability of the system was studied. The BCI was based on motor imagery, the feature extraction was performed with an adaptive autoregressive model and the classifier used was an adaptive quadratic discriminant analysis. The classifier was on-line updated by an adaptive estimation of the information matrix (ADIM). The system was also able to provide continuous feedback to the subject. The success of the feedback was studied analyzing the error rate and mutual information of each session and this analysis showed a clear improvement of the subject's control of the BCI from session to session.  相似文献   

17.
针对现有脑机接口(BCI)分类器与大脑认知过程结合不够紧密的问题,该文提出一种基于Chernoff加权的分类器集成框架方法,并用于同步运动想象脑机接口中。通过对训练数据进行统计分析,获得各时刻脑电信号(EEG)的统计特性,并建立基于大脑认知过程的高斯概率模型。然后利用Chernoff边界特性得到该概率模型的最小误差,并以此确定该时刻分类器的权重,通过对各时刻分类器的加权,实现同步脑机接口的信号分类。以脑机接口竞赛数据作为测试,并与线性判决分析、支持向量机和极限学习方法分别结合构成新的集成方法。由实验结果可知,加权集成框架方法的分类性能比原独立分类方法有显著提高。  相似文献   

18.
A brain-computer interface (BCI) is a system which allows direct translation of brain states into actions, bypassing the usual muscular pathways. A BCI system works by extracting user brain signals, applying machine learning algorithms to classify the user's brain state, and performing a computer-controlled action. Our goal is to improve brain state classification. Perhaps the most obvious way to improve classification performance is the selection of an advanced learning algorithm. However, it is now well known in the BCI community that careful selection of preprocessing steps is crucial to the success of any classification scheme. Furthermore, recent work indicates that combining the output of multiple classifiers (meta-classification) leads to improved classification rates relative to single classifiers (Dornhege et al., 2004). In this paper, we develop an automated approach which systematically analyzes the relative contributions of different preprocessing and meta-classification approaches. We apply this procedure to three data sets drawn from BCI Competition 2003 (Blankertz et al., 2004) and BCI Competition III (Blankertz et al., 2006), each of which exhibit very different characteristics. Our final classification results compare favorably with those from past BCI competitions. Additionally, we analyze the relative contributions of individual preprocessing and meta-classification choices and discuss which types of BCI data benefit most from specific algorithms.  相似文献   

19.
This paper shows that the connection of MOR-based boundary condition independent (BCI) dynamic compact thermal models (DCTMs) and detailed models of heat transfer problems is not straightforward and is subject to numerical issues. In order to overcome this drawback, a novel definition of MOR-based BCI DCTMs is provided, which makes this connection feasible. As a result, the proposed BCI DCTMs can be connected without limitations to any detailed model of heat transfer problems and/or to any other MOR-based BCI DCTM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号