首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A finite element analysis was carried out to analyze the distribution of tensile stress within and below a long HQ core stub for 77 in situ stress conditions. The maximum tensile stress experienced by the core along the axis during boring under in situ stress was accumulated in an equal-area stereonet for a central part of the cross-section. The maximum tensile stress accumulated for a central area of less than about 60% of the total cross-sectional area was concentrated in a certain direction, which was nearly the same direction as the minimum principal stress for all of the stress conditions, except those in which the minimum principal stress (σ3) was equal to the intermediate principal stress (σ2). When σ23, the direction of the cumulative maximum tensile stress lay approximately in the plane of σ23, which is perpendicular to the maximum principal stress. Based on the assumption that a penny-shaped crack is produced normal to the maximum tensile stress in proportion to the magnitude of such stress, the crack density in the core was analyzed by calculating strain under hydrostatic pressure as in differential strain curve analysis (DSCA). The maximum principal crack density in the central part of the core was much greater than the intermediate and minimum principal crack densities, excluding special cases in which σ23. The direction of the maximum crack density was similar to that of the accumulated maximum tensile stress. Thus, the direction of the maximum crack density obtained by DSCA predicts the direction of the minimum principal stress rather than that of the maximum principal stress, if the distribution of pre-existing microcracks before stress relief is isotropic and if additional microcracks are produced only by tensile stress during boring under in situ stress. To verify this, crack parameters were measured by DSCA for two cores of quartz-diorite, which were taken by overcoring when the hemispherical-ended borehole technique was used to measure in situ stress. The directions of the maximum crack parameters measured by DSCA were nearly the same as that of the minimum principal stress for one of the cores. For the other core, for which the magnitudes of the intermediate and minimum principal stresses were close to each other and, accordingly, the direction of the minimum principal stress was uncertain, the direction of the maximum crack density estimated by damage analysis under the assumption that σ23 coincided with the directions of the maximum crack parameters measured by DSCA.  相似文献   

2.
The rock mass failure process is characterized by several distinct deformation stages which include crack initiation, crack propagation and coalescence. It is important to know the stress levels associated with these deformation stages for engineering design and practice.Extensive theoretical, experimental and numerical studies on the failure process of intact rocks exist. It is generally understood that crack initiation starts at 0.3 to 0.5 times the peak uniaxial compressive stress. In confined conditions, the constant-deviatoric stress criterion was found to describe the crack initiation stress level.Here, generalized crack initiation and crack damage thresholds of rock masses are proposed. The crack initiation threshold is defined by σ1−σ3=A σcm and the crack damage threshold is defined by σ1−σ3=B σcm for jointed rock masses, where A and B are material constants and σcm is the uniaxial compressive strength of the rock masses. For a massive rock mass without joints, σcm is equal to σcd, the long-term uniaxial strength of intact rock. After examining data from intact rocks and jointed rock masses, it was found that for massive to moderately jointed rock masses, the material constants A and B are in the range of 0.4 to 0.5, 0.8 to 0.9, respectively, and for moderately to highly jointed rock masses, A and B are in the range of 0.5 to 0.6, 0.9 to 1.0, respectively. The generalized crack initiation and crack damage thresholds, when combined with simple linear elastic stress analysis, assist in assessing the rock mass integrity in low confinement conditions, greatly reducing the effort needed to obtain the required material constants for engineering design of underground excavations.  相似文献   

3.
Shear fracture (Mode II) of brittle rock   总被引:1,自引:0,他引:1  
Mode II fracture initiation and propagation plays an important role under certain loading conditions in rock fracture mechanics. Under pure tensile, pure shear, tension- and compression-shear loading, the maximum Mode I stress intensity factor, KImax, is always larger than the maximum Mode II stress intensity factor, KIImax. For brittle materials, Mode I fracture toughness, KIC, is usually smaller than Mode II fracture toughness, KIIC. Therefore, KImax reaches KIC before KIImax reaches KIIC, which inevitably leads to Mode I fracture. Due to inexistence of Mode II fracture under pure shear, tension- and compression-shear loading, classical mixed mode fracture criteria can only predict Mode I fracture but not Mode II fracture. A new mixed mode fracture criterion has been established for predicting Mode I or Mode II fracture of brittle materials. It is based on the examination of Mode I and Mode II stress intensity factors on the arbitrary plane θ,KI(θ) and KII(θ), varying with θ(−180°θ+180°), no matter what kind of loading condition is applied. Mode I fracture occurs when (KIImax/KImax)<1 or 1<(KIImax/KImax)<(KIIC/KIC) and KImax=KIC at θIC. Mode II fracture occurs when (KIImax/KImax)>(KIIC/KIC) and KIImax=KIIC at θIIC. The validity of the new criterion is demonstrated by experimental results of shear-box testing.Shear-box test of cubic specimen is a potential method for determining Mode II fracture toughness KIIC of rock since it can create a favorable condition for Mode II fracture, i.e. KIImax is always 2–3 times larger than KImax and reaches KIIC before KImax reaches KIC. The size effect on KIIC for single- and double-notched specimens has been studied for different specimen thickness B, dimensionless notch length a/W (or 2a/W) and notch inclination angle α. The test results show that KIIC decreases as B increases and becomes a constant when B is equal to or larger than W for both the single- and double-notched specimens. When a/W (or 2a/W) increases, KIIC decreases and approaches a limit. The α has a minor effect on KIIC when α is within 65–75°. Specimen dimensions for obtaining a reliable and reproducible value of KIIC under shear-box testing are presented. Numerical results demonstrate that under the shear-box loading condition, tensile stress around the notch tip can be effectively restrained by the compressive loading. At peak load, the maximum normal stress is smaller than the tensile strength of rock, while the maximum shear stress is larger than the shear strength in the presence of compressive stress, which results in shear failure.  相似文献   

4.
The Mohr-Coulomb criterion needs to be modified for highly anisotropic rock material and jointed rock masses. Taking σ2 into account, a new strength criterion is suggested because both σ2 and σ3 would contribute to the normal stress on the existing plane of weakness. This criterion explains the enhancement of strength (σ2 – σ3) in the underground openings because σ2 along the tunnel axis is not relaxed significantly. Another cause of strength enhancement is less reduction in the mass modulus in tunnels due to constrained dilatancy. Empirical correlations obtained from data from block shear tests and uniaxial jacking tests have been suggested to estimate new strength parameters. A correlation for the tensile strength of the rock mass is presented. Finally, Hoek and Brown theory is extended to account for σ2. A common strength criterion for both supported underground openings and rock slopes is suggested.  相似文献   

5.
The influence of the intermediate principal stress on rock fracturing and strength near excavation boundaries is studied using a FEM/DEM combined numerical tool. A loading condition of σ3=0 and σ1≠0, and σ2≠0 exists at the tunnel boundary, where σ1, σ2, and σ3, are the maximum, intermediate, and minimum principal stress components, respectively. The numerical study is based on sample loading testing that follows this type of boundary stress condition. It is seen from the simulation results that the generation of tunnel surface parallel fractures and microcracks is attributed to material heterogeneity and the existence of relatively high intermediate principal stress (σ2), as well as zero to low minimum principal stress (σ3) confinement. A high intermediate principal stress confines the rock in such a way that microcracks and fractures can only be developed in the direction parallel to σ1 and σ2. Stress-induced fracturing and microcracking in this fashion can lead to onion-skin fractures, spalling, and slabbing in shallow ground near the opening and surface parallel microcracks further away from the opening, leading to anisotropic behavior of the rock. Hence, consideration of the effect of the intermediate principal stress on rock behavior should focus on the stress-induced anisotropic strength and deformation behavior of the rocks. It is also found that the intermediate principal stress has limited influence on the peak strength of the rock near the excavation boundary.  相似文献   

6.
Effects of loading rate on rock fracture   总被引:3,自引:0,他引:3  
By means of a wedge loading applied to a short-rod rock fracture specimen tested with the MTS 810 or SHPB (split Hopkinson pressure bar), the fracture toughness of Fangshan gabbro and Fangshan marble was measured over a wide range of loading rates, =10−2–106 MPa m1/2 s−1. In order to determine the dynamic fracture toughness of the rock as exactly as possible, the dynamic Moiré method and strain–gauge method were used in determining the critical time of dynamic fracture. The testing results indicated that the critical time was generally shorter than the transmitted wave peak time, and the differences between the two times had a weak increasing tendency with loading rates. The experimental results for rock fracture showed that the static fracture toughness KIc of the rock was nearly a constant, but the dynamic fracture toughness KId of the rock ( ≥104 MPa m1/2 s−1) increased with the loading rate, i.e. log(KId)=a log +b. Macroobservations for fractured rock specimens indicated that, in the section (which was perpendicular to the fracture surface) of a specimen loaded by a dynamic load, there was clear crack branching or bifurcation, and the higher the loading rate was, the more branching cracks occurred. Furthermore, at very high loading rates ( ≥106 MPa m1/2 s−1) the rock specimen was broken into several fragments rather than only two halves. However, for a statically fractured specimen there was hardly any crack branching. Finally, some applications of this investigation in engineering practice are discussed.  相似文献   

7.
Understanding the state of stress in the earth is important for a broad range of engineering and geological problems. To obtain the state of stress in boreholes where conditions are such that conventional stress measurement techniques are impossible, we have used recent developments in the analysis of compressive and tensile wellbore failure in an integrated stress measurement strategy, involving also direct measurement of the least principal stress. The analysis is carried out in the two deep boreholes in the Siljan Ring area of the Baltic Shield. The Gravberg-1 borehole reached 6779 m true vertical depth (TVD) in the Siljan region, central Sweden, and the Stenberg-1 borehole, drilled 10 km to the south of Gravberg-1, was completed at 6529 m TVD. Analysis of vertical, drilling-induced tensile fractures in the nondeviating part of the Gravberg-1 well indicated that one principal stress is vertical and thus could be calculated from density estimates. Borehole breakouts and tensile fractures indicated that the average direction of the maximum horizontal stress, SH, is N72°W±7° in Gravberg-1 and N53°W±9° in the Stenberg-1 well. The direction of SH is on average very stable in both wells. Lower bound limits on the magnitude of the minimum horizontal stress, Sh, in the Gravberg-1 well were obtained from controlled and uncontrolled hydraulic fracturing and formation integrity tests. At 5 km depth in the Gravberg-1 borehole the minimum horizontal stress is approximately two-thirds of the vertical stress. We estimated the magnitude of the maximum horizontal stress in Gravberg-1 on the basis of drilling-induced tensile fractures identified in the borehole. SH was estimated by calculating the stress at the borehole wall necessary to cause tensile failure of the formation, incorporating our lower bound Sh estimates, corrections for the cooling of the wellbore by drilling fluids and differential fluid pressures. Our results indicate a strike-slip faulting regime in the Siljan area and that the state of stress is in frictional equilibrium with a coefficient of friction in the range 0.5 to 0.6.  相似文献   

8.
Studying fracture toughness behavior at elevated temperatures and confining pressures is valuable for a number of practical situations such as hydraulic fracturing used to enhance oil and gas recovery from a reservoir, and the disposal or safe storage of radioactive waste in underground cavities. Mixed-mode (I–II) fracture toughness under simulated reservoir conditions of high temperature and confining pressure was studied using straight notched Brazilian disk (SNBD) specimens under diametrical compression. Rock samples were collected from a limestone formation outcropping in the Central Province of Saudi Arabia. Tests were conducted under an effective confining pressure (σ3) of up to 28 MPa (4000 psi), and a temperature of up to 116°C. The results show a substantial increase in fracture toughness under confining pressure. The pure mode-I fracture toughness (KIC) increased by a factor of about 3.7 under a σ3 of 28 MPa compared to that under ambient conditions. The variation of KIC was found to be linearly proportional to σ3. The pure mode-II fracture toughness (KIIC) increased by a factor of 2.4 upon increasing σ3 to 28 MPa. On the other hand, KIC at 116°C was only 25% more than that at ambient conditions. Some ductile behavior was displayed by the rock samples at a high temperature and confining pressure.  相似文献   

9.
We conducted laboratory rock strength experiments in two ultra-fine-grained brittle rocks, hornfels and metapelite, which together are the major constituent of the Long Valley Caldera (California, USA) basement in the 2025–2996 m depth range. Both rocks are banded, and have very low porosity. Uniaxial compression tests at different orientations with respect to banding planes reveal that while the hornfels compressive strength is nearly isotropic, the metapelite possesses distinct anisotropy. Conventional triaxial tests in these rocks reveal that their respective strengths in a specific orientation increase approximately linearly with confining pressure. True triaxial compression experiments in specimens oriented at a consistent angle to banding, in which the magnitudes of the least (σ3) and the intermediate (σ2) principal stresses are different but kept constant during testing while the maximum principal stress is increased until failure, exhibit a behavior unlike that previously observed in other rocks under similar testing conditions. For a given magnitude of σ3, compressive strength σ1 does not vary significantly in both Long Valley rock types, regardless of the applied σ2, suggesting little or no intermediate principal stress effect. Strains measured in all three principal directions during loading were used to obtain plots of σ1 versus volumetric strain. These are consistently linear almost to the point of rock failure, suggesting no dilatancy. The phenomenon was corroborated by SEM inspection of failed specimens that showed no microcrack development prior to the emergence of one through-going shear failure plane steeply dipping in the σ3 direction. The strong dependency of compressive strength on the intermediate principal stress in other crystalline rocks was found to be related to microcrack initiation upon dilatancy onset, which rises with increased σ2 and retards the failure process. We infer that strength independence of σ2 in the Long Valley rocks derives directly from their non-dilatant deformation.  相似文献   

10.
This paper reports stress–strain–electric resistance experiments for diabase, limestone and marble containing NaCl solution during the whole process of uniaxial compression. We obtained the complete testing data for the stress–strain curve and the associated electrical resistance–strain curve. The change caused by internal cracking of the rock causes the corresponding variation of rock electrical resistance. There is a minimum value for all the electric resistance–strain curves, corresponding to the cracking stress σc or the initial cohesion ci. Based on the experimental results and stochastic property analyses of the rock fracture variation, we put forward a group of state equations for rock in sections to express the characteristics of rock during the whole process of uniaxial compression. The three variables, stress, strain and electrical resistance, together with data-fitted parameters, α12 and β, are contained in the equations. The equations are used to express the inelastic response which intensifies with the propagation of cracking.  相似文献   

11.
A series of physical and numerical model tests were performed to investigate the failure behavior of a continuous rock mass surrounding a silo-shaped cavern under high internal pressure. This research aims to provide information on fracture initiation and propagation in the rock mass around an underground gas storage cavern occurring as a result of applying high internal pressure under different controlled conditions. By scaling down the prototype 200 times, synthetic rock specimens containing silo-shaped hole were confined to vertical pressures of 12.5 and 25 kPa, with a Ko of 0.5, 1 and 3 in the two horizontal directions. The pressure was gradually applied in the silo until fracture initiated and propagated. The photogrammetric analysis provides insights into the response of the rock mass during the application of internal pressure and assists in identifying the failure path that occurred. The resulting fracture patterns indicate that the lateral earth pressure coefficient at rest, Ko, has a strong influence on the position of crack initiation and the propagation direction of the failure path. Supplemental numerical analyses were carried out to evaluate the failure mode, which cannot be addressed by the model tests. The numerical method, based on finite element method, considers stress analysis with localization and is developed to capture the formation of discrete fractures in a continuum. It is found that the method is able to accurately represent the factors that affect the fracture pattern and that a qualitative agreement between the experimental and numerical results can be established. A comparison between experimental and numerical results indicates that the fracturing process was caused by tensile cracking.  相似文献   

12.
This paper presents the findings of an extensive laboratory investigation into the identification and quantification of stress-induced brittle fracture damage in rock. By integrating the use of strain gauge measurements and acoustic emission monitoring, a rigorous methodology has been developed to aid in the identification and characterization of brittle fracture processes induced through uniaxial compressive loading. Results derived from monocyclic loading tests demonstrate that damage and the subsequent deformation characteristics of the damaged rock can be easily quantified by normalizing the stresses and strains observed in progression from one stage of crack development to another. Results of this analysis show that the crack initiation, σci, and crack damage, σcd, thresholds for pink Lac du Bonnet granite occur at 0.39σUCS and 0.75σUCS, respectively. Acoustic emissions from these tests were found to provide a direct measure of the rapid release of energy associated with damage-related mechanisms. Simplified models describing the loss of cohesion and the subsequent development of microfractures leading up to unstable crack propagation were derived using normalized acoustic emission rates. Damage-controlled cyclic loading tests were subsequently used to examine the effects of accumulating fracture damage and its influence on altering the deformation characteristics of the rock. These tests revealed that two distinct failure processes involving the progressive development of the microfracture network, may occur depending on whether the applied cyclic loads exceed or are restrained by the crack damage stress threshold.  相似文献   

13.
A three-dimensional hybrid boundary element method is developed for the analysis of non-linear behaviour of weak planes near underground excavations. The hybrid model adopts the fictitious stress method for the simulation of underground excavation and the displacement discontinuity method for the weak planes. Besides, the hybrid model employs linear elastic behaviour for the rock and the Barton-Bandis non-linear model for the weak plane. The developed model was verified and applied to analyze the problem of a tunnel penetrating a weak plane, in which the geometrical and material parameters were adopted from a tunnel project in central Taiwan. For the problem with the strike of the weak plane perpendicular to the tunnel axis, the numerical results show that: (1) the smaller the approaching angle, between the tunnelling direction and the dip direction of the weak plane, the larger the failure zone and the roof deformation; (2) the larger the RMR value, the smaller the deformation and failure zone; and (3) the larger the K (= σhu) ratio the larger failure zone will occur around the tunnel.  相似文献   

14.
The applicability of Darcy's Law to two-phase flow has been discussed. Specialised triaxial equipment has been employed to separately inject two pore fluid components (air and water) into fractured rock specimens, so that two-phase flow behaviour can be studied at high axial and confining stresses. Improvements to recently developed two-phase high-pressure triaxial apparatus have enabled the authors to continue their study of air–water (i.e. unsaturated) flow in intact and fractured rock specimens under a wide range of stress conditions, similar to those encountered in underground mining operations. In this paper, a simplified stratified two-phase flow model is also presented that satisfactorily predicts flow behaviour in an inclined rock fracture over a range of linear laminar flow for particular capillary pressure relationships. The mathematical model is based upon the principles of conservation of mass and momentum, and relates the fracture aperture (et) to phase permeability (ki) using Poiseuille's law and the proposed ‘phase height’, hi(t), for water and air phases. The experimental approach used to verify the model predictions is described and the predicted results compared with the measurements. The experimental data confirmed the relationship between relative permeability and flow rate, with respect to two-phase flow conditions.  相似文献   

15.
Bulking by Sphaerotilus natans has been attributed to several factors such as low dissolved oxygen in the aeration basin, wastes with high C:N ratios and phosphorus limitation; however, the occurrence of bulking has been reported in fruit, vegetable, meat and poultry wastewaters in which the ratio C:N is variable.Growth of S. natans was analyzed in a model system of a food industry wastewater (potato processing waste) that was characterized by HPLC determining that citric acid was the most important identified component. The effect of several carbon sources on S. natans growth was also studied; different C:N ratios were tested in a continuous culture system (chemostat). This strain grew in a mineral medium with citric acid as a sole carbon source, in spite of the contradictory results found in literature. Chemostat studies showed that the medium was carbon-limited when C:N ratios <19 mgCOD (mgN-NH3)−1. Monod kinetic growth coefficients, determined for this strain in chemostat were: maximum specific growth rate, μmax=0.301 h−1; Monod constant, KS=4.6 mgCOD l−1; true biomass growth yield, YTX/S=0.490 mgVSS (mgCOD)−1; endogenous decay rate, kd=0.011 h−1 and maintenance coefficient, mS=0.022 mgCOD (mgVSS)−1 h−1. The obtained parameters were compared with literature data and the effect of glucose and citric acid as carbon sources was discussed; these parameters are useful in modeling the growth of S. natans in potato processing wastewaters (or in other effluents under carbon-limiting conditions) especially when citrate is the main component and can be used to control filamentous bulking by metabolic or kinetic selection.  相似文献   

16.
The effect of shear displacement inclined relative to macroscopic water flow on the hydraulic conductivity of a rock fracture was estimated, using synthetic fractures that reproduce a tensile fracture in granite. The results showed that the hydraulic aperture normalized by the mean aperture increased with the angle between the directions of shear displacement and macroscopic water flow, according to a sinusoidal function of twice the angle. Formulae were established to estimate the hydraulic aperture of the fracture as a function of the mean aperture, the standard deviation of the initial aperture, the shear displacement, and the angle between the shear displacement and macroscopic water flow, based on results obtained in both this work and previous work, but neglecting scale effects. By assuming the mechanical properties of the fracture based on experimental results for granite, but neglecting scale effects, the hydraulic conductivity of the fracture with an arbitrary direction under a given state of stress (σ1=29 MPa, σ2=25 MPa and σ3=13.5 MPa) was estimated for macroscopic water flow in the directions of both σ1 and σ2. When the contour map of the transmissivity of the fracture is plotted on a stereonet of the normal direction of the fracture in the principal axes of stress, there is a ridge (line of the local maximum) of transmissivity in the circumferential direction, and the inclination angle of the ridge from the σ3-axis decreases with shear displacement, since shear dilation increases with both a decrease in normal stress and an increase in shear displacement. Furthermore, for the condition of stress given in this study, the transmissivity for macroscopic water flow in the direction of σ1 is maximum for a fracture with a normal direction within the σ2σ3 plane, while that in the direction of σ2 is maximum for a fracture with a normal direction within the σ1σ3 plane.  相似文献   

17.
An enclosed rotating disc unit was operated anaerobically as a denitrifying system, with methanol as the hydrogen donor. As the bacterial population became established, denitrification rate increased by 1·5 mg NO3—N reduced m−2 h−2, to a maximum rate of 260 mg NO3—N reduced m−2h−1. The C:N ratio necessary for complete denitrification was found to be 2·6:1. Optimum pH for denitrification lay in the range between pH 7·0 and 8·5. Q10 values were 1·38 between 10 and 30°C, −2·66 above 30°C and 13·06 below 10°C.  相似文献   

18.
Denitrification by a mixed bacterial population of medium containing 1000 mg NO3-N1−1 and acetate as carbon source was studied in batch, a single stage continuous flow stirred reactor (CFSTR) and a two stage CFSTR at 30°C. The optimum pH for denitrification, nitratase, nitrite reductase activities and growth was found to be 7.5 in batch culture. A single stage CFSTR growth limited by nitrate had an optimum denitrification rate of 0.13 mg NO3-N mg−1 cells h at a residence time of 8 h. The experimentally observed carbon to nitrate ratio (mg CH3 COO-C mg−1 NO3-N)was 1.7 for the dilution rates of 0.02–0.18 h−1. For the second stage CFSTR, bacteria growing at the maximum rate of 0.25 h−1 and not limited by nitrate had a denitrification rate of 0.24 mg NO3-N mg−1 h. Dissolved oxygen (up to 9.5 mg 1−1) did not effect denitrification rates in the second stage CFSTR. As the second stage CFSTR runs progressed extensive wall growth occurred and concurrently the output gas contained increasing quantities of nitrous oxide. A development from this study would be a two stage CFSTR with wall growth in the second stage which would make an efficient nitrate removal process.  相似文献   

19.
M. T. Downes 《Water research》1978,12(10):743-745
An automated technique for reactive phosphorus, sensitive to <0.5 mg P m−3, is described. Interference from AsO3−4-As and mercuric chloride is removed by thiosulphate in acid solution. The interference from 100 mg AsO3−4-As m−3, 10 g m−3 molybdate-reactive silicon or 60 g m−3 mercuric chloride is equivalent to <0.5 mg P m−3.  相似文献   

20.
M.T. Downes 《Water research》1978,12(9):673-675
An automated nitrate determination is described in which nitrate is reduced to nitrite with hydrazine sulphate under alkaline conditions in the presence of Cu2+ and Zn2+. Interferances encountered in natural water samples were eliminated by the addition of Zn2+ to the Cu2+ catalyst solution.The method is suitable for the determination of low NO3−N concentrations and compares favourably with the manual copperised cadmium technique for freshwater samples containing 10–800 mg m−3 NO3−N. The method is also linear at nitrate concentrations below 10 mg N m−3. The standard deviations (S.D.) of blanks and of samples containing 2 mg NO3−N m−3 were 0.013 and 0.06 mg N m−3 respectively at an analysis rate of 30 samples h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号