首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
本文研究了萘系高效减水剂、聚羧酸高效减水剂及碳酸锂三种化学外加剂对铝酸盐水泥净浆流动度、凝结时间和胶砂强度影响.结果表明:两种高效减水剂均可有效地提高铝酸盐水泥的净浆流动度、降低流动度经时损失,并延长水泥的凝结时间,当在减水剂中复掺碳酸锂后水泥净浆的初始流动度扩大、经时损失加大、凝结时间缩短.两种高效减水剂和碳酸锂复合使用均会明显提高铝酸盐水泥的早期强度,但对后期强度的影响规律不同.经吸附量和X-衍射分析测试表明,碳酸锂对高效减水剂有辅助减水效应,而高效减水剂和碳酸锂只是改变了铝酸盐水泥的水化进程,而对水化产物的种类没有影响.  相似文献   

2.
几种外加剂对硫铝酸盐水泥性能的影响   总被引:4,自引:0,他引:4  
研究了高浓高效减水剂FDN、缓凝剂H3803和四种早强促凝组分(Li2CO3,NaNO2,Al2SO4和Na2SO4)对硫铝酸盐水泥标准稠度、凝结时间以及抗压强度的影响。结果表明,高效减水剂FDN与硫铝酸盐水泥相容性很好,减水效果明显;硼酸对硫铝酸盐水泥的缓凝效果不稳定,但通过复掺早强促凝组分能改善其缓凝效果和早期强度,且适量的硼酸能提高水泥浆的后期强度。碳酸锂对硫铝酸盐水泥有显著的促凝作用,但对后期强度不利。  相似文献   

3.
《硅酸盐学报》2021,49(5):893-900
研究了柠檬酸复合聚羧酸减水剂(PCE)对高贝利特硫铝酸盐(HB-CSA)水泥浆体的净浆流动度、凝结时间和胶砂强度的影响,发现柠檬酸复配PCE显著延长了HB-CSA水泥的凝结时间,降低了水泥的初始流动度和早期强度,对水泥后期强度无不良影响。通过水泥水化微量热仪、X射线衍射分析仪和扫描电子显微镜对两者复配延缓HB-CSA水泥早期水化的机理进行分析,并利用有机碳吸附仪分析柠檬酸和PCE在HB-CSA水泥水化早期的吸附行为。结果表明:柠檬酸与PCE复合使用显著延缓了该种水泥的水化放热速率,抑制了水泥早期水化产物钙矾石(AFt)的生成,改变了HB-CSA水泥早期主要水化产物AFt的形貌,使其由棒状、管状变为细针状。两者在HB-CSA水泥中会产生竞争吸附,因此柠檬酸会降低PCE在HB-CSA水泥中分散效果,使水泥流动度有所降低。  相似文献   

4.
氨基磺酸系高效减水剂ASP缓凝性能研究   总被引:1,自引:0,他引:1  
氨基磺酸系高效减水剂是一种具有缓凝性能的新型高效减水剂,研究的结果表明:氨基磺酸系高效减水剂ASP分散能力强,流动度损失小,120min内相对流动度损失率仅为7.7%,远小于萘系减水剂FDN;掺加0.5%ASP的水泥净浆初凝和终凝时间较空白分别延长1h 55min和6h 30min,水泥水化放热峰较空白推迟约7h,但不能明显降低水化放热峰值;混凝土28d抗压强度为空白的1.38%,其混凝土试块微结构比掺FDN的试块更为均匀、细密,基本上已看不出网状结构。氨基磺酸系高效减水剂适合配制用于泵送的高强高性能混凝土。  相似文献   

5.
轩红钟  芦令超  程新 《水泥》2008,(2):7-10
研究了萘系减水剂(FDN)和聚羧酸减水剂(SR3)对阿利特-硫铝酸钡钙水泥凝结时间及抗压强度的影响,并采用XRD和SEM等测试方法分析和探讨了其作用机理.结果表明:减水剂FDN和SR3与阿利特-硫铝酸钡钙水泥相容性良好,减水效果明显;两种减水剂对该水泥初凝时间影响不大,而终凝时间明显缩短;同时,当减水剂掺量适当时,提高了水泥的强度.  相似文献   

6.
郝璟珂  宋远明  王志娟  王波 《硅酸盐学报》2019,47(11):1554-1558
钙矾石是硫铝酸盐水泥主要水化产物之一,其稳定性对水泥性能影响很大。将碳酸钙、硝酸钙或亚硝酸钠按不同掺量加入硫铝酸盐水泥,并研究了它们对水泥水化、线性膨胀率和抗压强度等影响。结果表明,掺入这3种物质后可生成相应的阴离子单取代水化铝酸钙(AFm);含硝酸钙或亚硝酸钠净浆线性膨胀率均高于纯硫铝酸盐水泥净浆;含有这3种物质的水泥砂浆56 d龄期抗压强度均高于纯硫铝酸盐水泥砂浆。碳酸钙、硝酸钙或亚硝酸钠可提高硫铝酸盐水泥水化产物钙矾石的稳定性,从而提升水泥性能,其中硝酸钙和亚硝酸钠效果较佳。  相似文献   

7.
新型高效萘系减水剂的合成及性能研究   总被引:2,自引:0,他引:2  
以萘、甲醛、浓硫酸、氢氧化钠、卤代衍生物为原料,用离子交换反应合成了一种新型萘系高效减水剂.其性能测试结果表明:(1)掺量5‰~12‰时,减水率达13%~21%;(2)最佳掺量为6‰左右,其水泥胶砂强度实验28d抗压强度达66.3MPa,抗折强度为11.5MPa;(3)该高效减水剂与市售萘系高效减水剂FDN相比,其净浆流动性更好,保塑时间更长;(4)水泥早期水化电阻率测定结果显示,电阻率随新型高效减水剂掺量的增加而升高,且水化诱导前期和诱导期需时变长.  相似文献   

8.
沈燕  王培芳  张伟  陈玺 《硅酸盐通报》2020,39(5):1438-1443
硫铝酸盐水泥是近年来广受关注的重要低碳水泥品种,在快速修补和防渗堵漏应用中,需要掺入适宜的促凝剂来满足施工要求.研究了两种锂化合物对硫铝酸盐水泥凝结时间、强度的影响规律,并采用XRD和SEM手段分析水泥水化产物.结果表明,当掺入两种锂化合物之后,硫铝酸盐水泥的凝结时间有明显的降低,并且Li2 CO3对硫铝酸盐水泥的促凝作用比LiOH·H2 O更为显著;硫铝酸盐水泥的小时强度随着Li2 CO3掺量的增加而明显提高,LiOH·H2 O对水泥小时强度的影响并不明显,两种锂化合物均会降低水泥的后期强度;从水化产物的微观分析来看,硫铝酸盐水泥的水化产物种类并不会因掺加锂化合物而有所改变,Li2 CO3对硫铝酸盐水泥的1 d水化有所促进,而LiOH·H2 O不会对水化产物产生明显影响.  相似文献   

9.
采用正交试验研究利用低品位铝矾土、铸造废砂、石灰石、石膏等原料制备高贝利特硫铝酸盐水泥的煅烧条件.对生料热稳定性、水泥熟料组成及其水化产物形貌等进行测试表征.可初步确定熟料的煅烧温度范围在1250~1360℃,该水泥熟料的主要矿物组成为贝利特和无水硫铝酸钙,用X-射线K值法定量分析熟料物相组成与理论计算值基本接近.该水泥的主要水化产物有钙矾石、水化硅酸钙凝胶、单硫型水化硫铝酸钙等.实验研究表明:煅烧温度1300℃,保温时间90 min,急冷,制得的高贝利特硫铝酸盐水泥凝结时间短,初凝时间30 min,终凝仅40 min,28 d水泥净浆强度可达65.4 MPa,胶砂强度与市售42.5硫铝酸盐水泥相比,早期强度比较接近,后期强度高出10%.  相似文献   

10.
蒋卓  雷学文  廖宜顺  廖国胜 《硅酸盐通报》2016,35(12):4088-4092
研究了粉煤灰(FA)及其掺量对硫铝酸盐水泥(CSA)浆体的凝结时间、抗压强度和化学收缩的影响规律,并通过XRD、SEM等方法对72 h龄期时的水化产物进行分析.结果表明,粉煤灰缩短了硫铝酸盐水泥的凝结时间,当粉煤灰掺量为40%时,初凝时间和终凝时间分别缩短了76 min和94 min;掺入粉煤灰使得硫铝酸盐水泥的抗压强度降低,但在28 d龄期时,粉煤灰掺量为20%的硫铝酸盐水泥复合浆体的抗压强度仅略微降低;在硫铝酸盐水泥体系中掺入粉煤灰时,其浆体化学收缩随着粉煤灰掺量的增加逐渐减小,当粉煤灰掺量为20%和40%时,72 h龄期时的化学收缩值分别为0.138 mL/g和0.088 mL/g,较未掺粉煤灰时分别降低了26%和49%;微观分析表明,掺入粉煤灰后,72 h龄期时的水化产物主要是钙矾石和水化硅酸钙凝胶,并未发现氢氧化钙晶体.  相似文献   

11.
研究了海水环境下掺入硅灰、粉煤灰、矿渣对硫铝酸盐水泥抗压强度、化学收缩和水化产物的影响规律.结果表明:当硅灰的掺量为2.5%时,水泥浆体的抗压强度比空白组高.矿渣掺量为10%的水泥浆体28 d抗压强度明显超过掺入硅灰和粉煤灰时的强度,60 d强度高于空白组.掺入2.5%硅灰后,水泥浆体的化学收缩增大;在水化早期,粉煤灰和矿渣的火山灰活性很低,导致水泥浆体的化学收缩降低.掺入10%硅灰加快了硫铝酸盐水泥3 d水化反应,钙矾石生成量增多,水泥浆体早期强度比掺其它掺合料有所提高,但体积过快膨胀会破坏其内部结构,对水泥浆体的强度发展不利.  相似文献   

12.
探究早强型聚羧酸系减水剂(ES-PCE)对水泥水化的作用机制,有助于ES-PCE的研发设计与推广应用。本文通过对水泥水化进程、溶解速率、水化产物生长、凝结时间与抗压强度进行表征,分析了ES-PCE与普通聚羧酸系减水剂(PCE)对基准水泥早期水化的影响机理。结果表明:PCE与ES-PCE均会降低水泥悬浮液的溶解速率;PCE的掺入延缓了水泥水化的诱导期与加速期,降低了水化放热量;而ES-PCE仅略微延迟了水泥水化的诱导期,但缩短了加速期,水化放热量基本不变。与基准水泥相比,ES-PCE分别提早了水泥初凝时间10 min和终凝时间85 min。ES-PCE的掺入提高了水泥早期和后期强度,掺0.2%(质量分数)ES-PCE的水泥7 d抗压强度较基准组提高了14%,而同掺量的PCE强度提高仅为前者的一半。PCE与ES-PCE的掺入释放了水泥颗粒团状絮凝结构中的水分,有利于水泥水化,但二者对水化的影响截然相反;PCE分子结构中大量的羧基络合了溶液中的Ca2+,抑制了水泥颗粒表面晶核的形成,起到了一定的缓凝作用;然而,ES-PCE分子结构中羧基含量较低,Ca2+的络合作用较弱,缓凝效果并不明显,在体系中有效水分增多的情况下,反而促进水泥的水化,起到了早强效果。水灰比为0.4的水泥砂浆中,ES-PCE的掺量适宜控制在0.3%以下,在保证减水率的同时,对水泥早期和后期强度均起到一定的增强作用。  相似文献   

13.
在硫铝酸盐水泥实际工程应用中,硼砂作为常用的缓凝剂,容易导致硫铝酸盐水泥过度缓凝,为了更好调控水泥的凝结时间,本文研究了锂盐对硼砂在硫铝酸盐水泥中作用的影响,主要从凝结时间、抗压强度、水化产物方面进行了分析。结果表明:当硼砂掺量为0.1%(质量分数,下同)时,氢氧化锂能明显缩短硫铝酸盐水泥的凝结时间,降低水泥的抗压强度;当硼砂掺量为0.5%,氢氧化锂掺量大于0.07%时,水泥的凝结时间大幅度缩短,早期抗压强度随氢氧化锂掺量增加而略微提高,后期强度略微降低;在掺加硼砂的硫铝酸盐水泥体系中,锂盐的掺入不会改变水泥水化产物的种类,当硼砂掺量为0.5%时,1 d水化产物钙矾石衍射峰强度显著降低,28 d钙矾石衍射峰强度变化不明显。  相似文献   

14.
杨林  严云  胡志华  周科  李正银 《水泥》2012,(7):7-10
基于硫铝酸盐水泥、硅酸盐水泥各自的特点,研究了二者复配后的标准稠度用水量、凝结时间、水化热效应、胶砂强度、膨胀性、水化产物的物相及微观形貌。结果表明,复配水泥的标准稠度用水量因复配比例不同而变化,凝结时间相对于占主导地位的单组分水泥明显缩短;复配水泥的早期水化速率得到提高,1d、7d的水化放热量均低于占主导地位的单组分水泥;28d抗压、抗折强度低于任何单组分水泥;膨胀性的大小取决于两种水泥的复配比例;硫铝酸盐水泥与硅酸盐水泥的复配使二者的水化相互促进,随着硫铝酸盐水泥掺量的增加,Ca(OH)2相的衍射峰减弱,AFt相的衍射峰增强;纯硅酸盐水泥水化后的微观形貌是致密的,而与硫铝酸盐水泥复配后则出现微观裂纹。  相似文献   

15.
接枝磺化木质素高效减水剂的配伍性能研究   总被引:4,自引:1,他引:3  
以酸析木质素为原料,通过接枝、磺化和缩合制得接枝磺化酸析木质素GSAL,研究了它与木质素磺酸盐和消泡剂的配伍性能。结果表明:GSAL分别与木质素磺酸盐及其改性产品复配,可得到减水剂GSAL1和GSAL2。当水灰比为0.29、掺量w(GSAL1)=0.6%时,水泥净浆流动度达243mm;掺量w(GSAL2)=0.8%时,水泥净浆初凝时间延长110min,终凝时间延长约7h。掺量w(GSAL1)=0.8%时,水泥净浆减水率为21.4%,砂浆3d和7d的抗压强度比分别为163%和143%,其对水泥的减水增强作用超过了萘系高效减水剂FDN。GSAL与消泡剂的复配产品起泡性降低,水泥净浆流动度、新拌砂浆密度和砂浆抗压强度比均增大,GSAL与磷酸三丁酯配伍后的综合性能最佳。  相似文献   

16.
改性木素磺酸盐泵送剂GCL1-3的制备及性能研究   总被引:4,自引:1,他引:3  
通过研究缓凝高效减水剂GCL1与保水剂、引气剂的配伍性能 ,研制了混凝土泵送剂GCL1- 3。GCL1与保水剂HEC、引气剂复配时 ,改善了水泥净浆的保水性能 ,提高了硬化水泥的早期及后期抗压强度。实验测试了GCL1- 3的水泥净浆流动度、减水率、流动度损失和抗压强度等性能。结果表明 ,当w (水 )∶w(水泥 ) =0 4∶1 0 ,w (GCL1- 3) =0 .5 %时 ,水泥净浆流动度可达2 30mm ,减水率达 18% ,且无离析现象 ;2h内流动度损失仅为 2 4% ,而掺FDN的净浆已经失去流动性 ;w(GCL1- 3) =0 .5 %时 ,水泥净浆硬化 3d、7d、2 8d的抗压强度比分别达 146 %、15 8%与148% ,均高于使用FDN  相似文献   

17.
本文研究了不同拌和水以及海水拌和时粉煤灰和硅灰掺量对硫铝酸盐水泥(SAC)砂浆力学性能和表观孔隙率以及净浆凝结时间、化学收缩、孔溶液pH值和氯离子结合能力等的影响,并通过XRD、SEM和EDS分析水泥水化产物和微观结构。结果表明,海水能加快SAC早期水化并提高其早期强度,但后期强度和淡水拌和时无明显差别。粉煤灰和硅灰均会延长SAC凝结时间,对早期抗压强度不利,而掺加质量分数为5.0%和7.5%的硅灰能提高SAC砂浆28 d抗压强度。硅灰掺量增加时会提高用水量和表观孔隙率,降低流动性,使水泥化学收缩增大,降低净浆pH值且减少氯离子结合量;粉煤灰能够提高砂浆流动性,减少水泥化学收缩,但掺量越大对SAC砂浆抗压强度和抗折强度越不利,掺质量分数为10%的粉煤灰可小幅提高氯离子结合量且减小表观孔隙率。  相似文献   

18.
通过凝结时间、抗压强度和电阻率等分析手段,研究了Ca(OH)2对硫铝酸盐水泥-粉煤灰复合胶凝材料水化过程的影响.结果表明,掺入Ca(OH)2明显缩短了硫铝酸盐水泥-粉煤灰复合胶凝材料的凝结时间;当Ca(OH)2掺量为0.5%时,初凝时间最短,1 d、28 d强度均明显提高;当Ca(OH)2的掺量为2%时,28 d强度相比空白样提高了61.9%;掺入Ca(OH)2后,硫铝酸盐水泥-粉煤灰复合胶凝材料的1 d电阻率减小,随着Ca(OH)2掺量增大,电阻率逐渐减小,电阻率变化率极大值提前,说明Ca(OH)2加快了该复合胶凝材料的早期水化进程.XRD分析表明,掺入Ca(OH)2后,水化1 d时钙矾石的生成量增多,消耗无水硫铝酸钙的量增多;水化28 d时钙矾石的生成量相对变化较小,但强度明显增大,粉煤灰对硫铝酸盐水泥强度的贡献较为明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号