首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The design and characteristics of a transmittance cell for ultraviolet, visible, and infrared spectroscopy and spectroelectrochemistry are described. Through modification of a previously reported design, this cell employs threaded glass connectors as insertion ports for either quartz- or silicon-windowed tubes, thus permitting essentially continuous variation of the optical path length from ~0.050 to 200 mm. Though the initial fabrication requires skillful glassblowing, once constructed, the cell's simple design allows for rapid and reproducible disassembly/reassembly between experiments. The utility of the cell for a diversity of fluid samples is demonstrated through applications to water, aqueous ferricyanide, ferrocene in methylene chloride, and acetone vapor.  相似文献   

2.
Fan TY  Daneu JL 《Applied optics》1998,37(9):1635-1637
The changes in optical path length and refractive index with temperature are measured at 633 nm in undoped YAG in the 85-285 K temperature range. At 100 K the change in optical path length with temperature is only ~25% of its value at 300 K; the change of refractive index with temperature is also substantially reduced at low temperatures.  相似文献   

3.
A new refractometer with a variable length vacuum cell has been developed to eliminate errors caused by deformations in optical windows of the cell. The refractive index of air is determined by measuring the changes in the optical path difference between the air of interest and a vacuum as a function of the changes in the cell length. An optical phase modulation technique and a dark fringe detection method are used to obtain a high resolution in measuring the optical path difference by a double-pass Michelson interferometer. A combined standard uncertainty of 5×10-9 in the measurement of the refractive index of air has been achieved  相似文献   

4.
Masuch R  Moss DA 《Applied spectroscopy》2003,57(11):1407-1418
Stopped flow spectroscopy is an established technique for acquiring kinetic data on dynamic processes in chemical and biochemical reactions, and Fourier transform infrared (FT-IR) techniques can provide particularly rich structural information on biological macromolecules. However, it is a considerable challenge to design an FT-IR stopped flow system with an optical path length low enough for work with aqueous (1H2O) solutions. The system presented here is designed for minimal sample volumes (approximately 5 microL) and allows simultaneous FT-IR rapid-scan and VIS measurements. The system employs a micro-structured diffusional mixer to achieve effective mixing on the millisecond time scale under moderate flow and pressure conditions, allowing measurements in a cell path length of less than 10 microns. This makes it possible to record spectra in 1H2O solutions over a wide spectral range. The system layout is also designed for a combination of kinetic and static measurements, in particular to obtain detailed information on the faster spectral changes occurring during the system dead time. A detailed characterization of the FT-IR stopped flow system is presented, including a demonstration of the alkaline conformational transition of cytochrome c as an example.  相似文献   

5.
We present a laser-based system to measure the refractive index of air over a long path length. In optical distance measurements, it is essential to know the refractive index of air with high accuracy. Commonly, the refractive index of air is calculated from the properties of the ambient air using either Ciddor or Edlén equations, where the dominant uncertainty component is in most cases the air temperature. The method developed in this work utilizes direct absorption spectroscopy of oxygen to measure the average temperature of air and of water vapor to measure relative humidity. The method allows measurement of temperature and humidity over the same beam path as in optical distance measurement, providing spatially well-matching data. Indoor and outdoor measurements demonstrate the effectiveness of the method. In particular, we demonstrate an effective compensation of the refractive index of air in an interferometric length measurement at a time-variant and spatially nonhomogeneous temperature over a long time period. Further, we were able to demonstrate 7 mK RMS noise over a 67 m path length using a 120 s sample time. To our knowledge, this is the best temperature precision reported for a spectroscopic temperature measurement.  相似文献   

6.
Akin to optical beam chopping, we demonstrate that formation and routing of aqueous droplets in oil can chop a fluidic sample to permit phase sensitive detection. This hand-operated microfluidic sample chopper (μChopper) greatly reduces the detection limit of molecular absorbance in a 27 μm optical path. With direct dependence on path length, absorbance is fundamentally incompatible with microfluidics. While other microfluidic absorbance approaches use complex additions to fabrication, such as fiber coupling and increased optical paths, this self-regulated μChopper uses opposing droplet generators to passively alternate sample and reference droplets at ~10 Hz each. Each droplet's identity is automatically locked-in to its generator, allowing downstream lock-in analysis to nearly eliminate large signal drift or 1/f noise. With a lock-in time constant of 1.9 s and total interrogated volume of 59 nL (122 droplets), a detection limit of 3.0 × 10(-4) absorbance units or 500 nM bromophenol blue (BPB) (29 fmol) was achieved using only an optical microscope and a standard, single-depth (27 μm) microfluidic device. The system was further applied to nanoliter pH sensing and validated with a spectrophotometer. The μChopper represents a fluidic analog to an optical beam chopper, and the self-regulated sample/reference droplet alternation promotes ease of use.  相似文献   

7.
On-line fourier transform infrared detection in capillary electrophoresis   总被引:1,自引:0,他引:1  
The coupling of Fourier transform infrared (FT-IR) spectroscopy as a new on-line detection principle in capillary electrophoresis (CE) is presented. To overcome the problem of total IR absorption by the fused-silica capillaries that are normally employed in CE separations, a micromachined IR-transparent flow cell was constructed. The cell consists of two IR-transparent CaF2 plates separated by a polymer coating and a titanium layer producing an IR detection window, 150 microm wide and 2 mm long, with a path length of 15 microm. The IR beam was focused on the detection window using an off-axis parabolic mirror in an optical device (made in-house) attached to an external optical port of the spectrometer. The connections between the fused-silica capillaries and the flow cell were made by a small O-ring of UV-curing epoxy adhesive on the sharply cut ends of the capillaries, allowing the capillaries to be easily replaced. Aqueous solutions comprising mixtures of adenosine, guanosine, and adenosine monophosphate were used to test the system's performance. Conventional on-line UV detection was employed to obtain reference measurements of analytes after the IR detection flow cell. The limit of FT-IR detection for all analytes (in absolute amounts) was in the nano- to picogram range corresponding to concentrations in the low-millimolar range.  相似文献   

8.
本文介绍了接枝氯丁胶粘剂的合成,聚合反应转化率、接枝率的测定方法及接枝共聚反应的确证,从复合材料的角度,讨论了相态结构与胶粘剂性能的关系。对接枝机理、胶粘剂的热性能进行了探讨,特别就IR、XPS、TEM、SEM、TGA等现代分析手段在接枝氯丁胶粘剂表征方面的应用作了详细的叙述,并给出了一种简易快速的TEM试样处理技术。  相似文献   

9.
介绍了一种可以对材料长度变化进行测量的高稳定性双光程激光干涉系统,由于该干涉系统的测量光路和参考光路具有相似的传播路径,光程差仅由被测试样的长度引起,干涉系统具有较强的抵抗环境温度变化和振动等外界干扰的能力。通过平晶反射膜测量试验,对干涉系统的稳定性进行了验证,结果表明在6. 5 h内测量数据的标准偏差为4. 2 nm。该激光干涉系统可用于材料尺寸变化(如线膨胀系数)的高准确度测量。  相似文献   

10.
Analysis of the optical intrinsic signal of an exposed cortex has been applied to measurement of functional brain activation. It is important for accurate measurement of concentration changes in oxygenated hemoglobin and deoxygenated hemoglobin to consider the wavelength dependence of the mean optical path lengths for the reflectance of cortical tissue. A method is proposed to experimentally estimate the wavelength dependence of the mean optical path length in cortical tissue from the multispectral reflectance of the exposed cortex without any additional instruments. The trend in the wavelength dependence of the mean optical path length estimated by the proposed method agrees with that estimated by the model-based prediction, whereas the magnitude of the wavelength dependence predicted by the proposed method is greater than that of the model-based prediction. The experimentally predicted mean optical path length minimizes the difference in the measured changes in the concentrations of the oxygenated hemoglobin and deoxygenated hemoglobin calculated from different wavelength pairs.  相似文献   

11.
Farley CW  Reddy BR 《Applied optics》2011,50(4):526-531
Temperature measurement is required for many applications but can be difficult in some cases. Laser heating or cooling studies demand accurate measurements of temperature changes. A Michelson interferometer configuration has been used to investigate laser heating in solids. An analytical formula was derived to estimate the temperature change from the fringe count by taking into account the temperature dependence of the sample length and refractive index. When 115?mW of a focused Ar+ laser beam (488?nm) passes through a Pr(3+)-doped YAG sample, its temperature increased by 11.7±1.0?K along the beam path due to nonradiative relaxation. The power dependence of the fringe count/movement was recorded. The temperature change was estimated by the interferometric method and is in agreement with that measured by a thermocouple.  相似文献   

12.
In this paper, we study the temperature-dependent optical properties of gold–silver core–shell (Au@Ag) nanorods coated by a thermo-responsive polymer poly (N-isopropylacrylamide) (PNIPAM). The wavelength of the plasmonic resonant absorption of the nanohybrids changes with temperature due to the combination effects of the plasmon resonance of the core and the thermal response of the shell. Using effective medium theory, we find that with increase of temperature, the absorption peak red-shifts due to the competition effects from the changes of the thickness and the effective refractive index of the polymer shell. The working wavelength can be tuned by the aspect ratio of nanorods. Moreover, the temperature sensitivity of plasmon resonance increases with the increase of the aspect ratio. Our studies provide a proof-of-concept design of thermal responsive plasmonic smart material.  相似文献   

13.
巯基包覆CdSe和CdSe/CdS核壳纳米晶的水相合成与表征   总被引:2,自引:0,他引:2  
利用水相合成的方法制备了巯基包覆的具有较高荧光量子产率的CdSe和CdSe/CdS纳米晶.水相合成方法的优点是原料低廉、安全可靠和重复性高,缺点是纳米晶的尺寸分布较宽,发光效率不是很高.采用X-射线粉末衍射、吸收和荧光等光谱手段对纳米晶的平均尺度、粒径分布、晶体结构及发光特性进行了表征。在77K到300K的温度范围内,随着温度降低,CdSe纳米晶的发光峰逐渐蓝移,而CdSe/Cds纳米晶发光峰位基本不随温度变化而变化.此外,在325nm激光辐照下,CdSe/CdS纳米晶的荧光寿命比CdSe纳米晶延长了6倍左右,稳定性大幅度提高.以上结果表明,核壳结构的CdSe/CdS纳米晶具有较高的发光效率和良好的稳定性,具有广阔的应用前景.  相似文献   

14.
Conventional duplex (DL) and functionally graded (FG) LaTi2Al9O19 (LTA) coatings were deposited over C263 nickel alloy by air plasma spray (APS) and compared with subsequent laser glazing processes. The effect of laser glazing on adhesion strength and thermal barrier performance was investigated. The thermal barrier effect was measured using the temperature difference technique involving infrared (IR) rapid heater and the adhesion strength was measured using the scratch tester. The surface morphology and microstructure were analyzed by optical microscopy (OM), Scanning Electron Microscope (SEM) and 3D profilometer. Based on the experimental results, the laser glazing showed a remarkable temperature drop after IR rapid heating. The changes in porosity and grain refinement make more contributions to the temperature drop of the laser-glazed coatings than that of as-sprayed coatings. The temperature drop is about 110°C for laser-glazed LTA FG coating after 100?s of IR flash, while the drop in DL as-sprayed coating is 60°C compared to the base material.  相似文献   

15.
16.
The optical absorption of a 30Na2O, 70SiO2 glass containing iron, chromium or cerium has been studied after thermal stabilization at various temperatures around the transformation range of the glass. The optical absorptions due to iron(II), iron(III), cerium(III) and cerium(IV) have been found to increase with increasing stabilization temperature; the optical absorptions due to chromium(III) and chromium(VI) do not change significantly with stabilization temperature. The changes in optical absorption due to stabilization at different temperatures have been found to be reversible and reproducible. It has been argued that as the equilibrium volume of a given mass of glass increases with increasing stabilization temperature, and as the ligand field strength surrounding the transition metal ion does not increase due to this enlargement of volume while the optical absorption increases, the high temperature stabilization of a glass probably increases some local randomness of structure (creating extra distortion of the transition metal complex) and does not cause an uniform volume expansion of the glass.  相似文献   

17.
PbS thin films were grown on glass substrates by chemical bath deposition (CBD) using lead nitrate, thiourea and sodium hydroxide in aqueous solutions at three different temperatures (22, 36 and 50?°C). The microstructure and morphology evolution of the films were investigated using X-ray diffraction, scanning electron microscopy and atomic force microscopy. Optical properties were studied using UV–Vis–IR spectroscopy. The results indicate that temperature plays an important role in controlling the morphology and optical properties of nanostructured PbS thin films through changing deposition mechanism. The active deposition mechanism changed from cluster to ion-by-ion mechanism with an increase in deposition temperature from 22 to 50?°C, and consequently, film properties such as morphology, optical absorption and preferred orientation changed completely.  相似文献   

18.
Gas-liquid solubility equilibria (Henry's Law behavior) are of basic interest to many different areas. Temperature-dependent aqueous solubilities of various organic compounds are of fundamental importance in many branches of environmental science. In a number of situations, the gas/dissolved solute of interest has characteristic spectroscopic absorption that is distinct from that of the solvent. For such cases, we report facile nondestructive rapid measurement of the temperature-dependent Henry's law constant (K(H)) in a static sealed spectrometric cell. Combined with a special cell design, multiwavelength measurement permits a large range of K(H) to be spanned. It is possible to derive the K(H) values from the absorbance measured in the gas phase only, the liquid phase only (preferred), and both phases. Underlying principles are developed, and all three approaches are illustrated for a solute like acetone in water. A thermostatic spectrophotometer cell compartment, widely used and available, facilitates rapid temperature changes and allows rapid temperature-dependent equilibrium measurements. Applicability is shown for both acetone and methyl isobutyl ketone. Very little sample is required for the measurement; the K(H) for 4-hydroxynonenal, a marker for oxidative stress, is measured to be 56.9 ± 2.6 M/atm (n = 3) at 37.4 °C with 1 mg of the material available.  相似文献   

19.
Wang X  Xu X  Lu Q  Xi F 《Applied optics》2007,46(15):2963-2968
A Shack-Hartmann sensor nonintrusive measurement for the temperature profile in a heat-capacity neodymium-doped glass rod is proposed. This technique is possible because the optical path length of the rod changes with temperature linearly over a wide range. The temperature change of the solid-state laser rod is often recorded by using a thermocouple, thermal camera, or phase-shifting interferometer. Based on an analysis of temperature-induced changes in length and index of refraction, we can get the temperature profiles from the wavefront reconstructions in real time. The results suggest the Shack-Hartmann sensors could replace microbolometer-based thermal cameras and phase-shifting interferometers for dynamic temperature profiles in heat-capacity laser rods with particular advantages. A strange temperature chaos of the Nd:glass rod just after the pump cycle is discovered.  相似文献   

20.
The general problem of obtaining correct emittance values from broadband IR radiometric measurements on nongray samples is discussed. If the spectral emittance has structure in a band, the emittance, averaged over that band, will be temperature dependent, even if the spectral emittance is insensitive to the temperature change. We point out that a widely used expression, with correction for radiance from the surroundings reflected by the sample, is valid only if the spectral emittance is temperature and wavelength independent, i.e., gray. If the spectral emittance is nongray, the conventional emission factor, as determined by a broadband radiometer, is temperature dependent and the numerical value is significantly different from the averaged band emittance sought. Two algorithms are suggested to extract the correct band-averaged emittance from the temperature-dependent radiometric emission factor obtained with the conventional expression. The algorithms are demonstrated with a step model for the spectral emittance, and it is shown that the agreement with the correct average band emittance is significantly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号