首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Biomechanical models that describe soft tissue deformation provide a relatively inexpensive way to correct registration errors in image-guided neurosurgical systems caused by nonrigid brain shift. Quantifying the factors that cause this deformation to sufficient precision is a challenging task. To circumvent this difficulty, atlas-based methods have been developed recently that allow for uncertainty, yet still capture the first-order effects associated with deformation. The inverse solution is driven by sparse intraoperative surface measurements, which could bias the reconstruction and affect the subsurface accuracy of the model prediction. Studies using intraoperative MR have shown that the deformation in the midline, tentorium, and contralateral hemisphere is relatively small. The dural septa act as rigid membranes supporting the brain parenchyma and compartmentalizing the brain. Accounting for these structures in models may be an important key to improving subsurface shift accuracy. A novel method to segment the tentorium cerebelli will be described, along with the procedure for modeling the dural septa. Results in seven clinical cases show a qualitative improvement in subsurface shift accuracy making the predicted deformation more congruous with previous observations in the literature. The results also suggest a considerably more important role for hyperosmotic drug modeling for the intraoperative shift correction environment.  相似文献   

2.
Robust nonrigid registration to capture brain shift from intraoperative MRI   总被引:1,自引:0,他引:1  
We present a new algorithm to register 3-D preoperative magnetic resonance (MR) images to intraoperative MR images of the brain which have undergone brain shift. This algorithm relies on a robust estimation of the deformation from a sparse noisy set of measured displacements. We propose a new framework to compute the displacement field in an iterative process, allowing the solution to gradually move from an approximation formulation (minimizing the sum of a regularization term and a data error term) to an interpolation formulation (least square minimization of the data error term). An outlier rejection step is introduced in this gradual registration process using a weighted least trimmed squares approach, aiming at improving the robustness of the algorithm. We use a patient-specific model discretized with the finite element method in order to ensure a realistic mechanical behavior of the brain tissue. To meet the clinical time constraint, we parallelized the slowest step of the algorithm so that we can perform a full 3-D image registration in 35 s (including the image update time) on a heterogeneous cluster of 15 personal computers. The algorithm has been tested on six cases of brain tumor resection, presenting a brain shift of up to 14 mm. The results show a good ability to recover large displacements, and a limited decrease of accuracy near the tumor resection cavity.  相似文献   

3.
All image-guided neurosurgical systems that the authors are aware of assume that the head and its contents behave as a rigid body. It is important to measure intraoperative brain deformation (brain shift) to provide some indication of the application accuracy of image-guided surgical systems, and also to provide data to develop and validate nonrigid registration algorithms to correct for such deformation. The authors are collecting data from patients undergoing neurosurgery in a high-field (1.5 T) interventional magnetic resonance (MR) scanner. High-contrast and high-resolution gradient-echo MR image volumes are collected immediately prior to surgery, during surgery, and at the end of surgery, with the patient intubated and lying on the operating table in the operative position. Here, the authors report initial results from six patients: one freehand biopsy, one stereotactic functional procedure, and four resections. The authors investigate intraoperative brain deformation by examining threshold boundary overlays and difference images and by measuring ventricular volume. They also present preliminary results obtained using a nonrigid registration algorithm to quantify deformation. They found that some cases had much greater deformation than others, and also that, regardless of the procedure, there was very little deformation of the midline, the tentorium, the hemisphere contralateral to the procedure, and ipsilateral structures except those that are within 1 cm of the lesion or are gravitationally above the surgical site  相似文献   

4.
In this paper, we evaluate different methods to estimate patient-specific scalp, skull, and brain surfaces from a set of digitized points from the target's scalp surface. The reconstruction problem is treated as a registration problem: An a priori surface model, consisting of the scalp, skull, and brain surfaces, is registered to the digitized surface points. The surface model is generated from segmented magnetic resonance (MR) volume images. We study both affine and free-form deformation (FFD) registration, the use of average models, the averaging of individual registration results, a model selection procedure, and statistical deformation models. The registration algorithms are mainly previously published, and the objective of this paper is to evaluate these methods in this particular application with sparse data. The main interest of this paper is to generate geometric head models for biomedical applications, such as electroencephalography and magnetoencephalographic. However, the methods can also be applied to other anatomical regions and to other application areas. The methods were validated using 15 MR volume images, from which the scalp, skull, and brain were manually segmented. The best results were achieved by averaging the results of the FFD registrations of the database: the mean distance from the manually segmented target surface to a deformed a priori model surface for the studied anatomical objects was 1.68-2.08 mm, depending on the point set used. The results support the use of the evaluated methods for the reconstruction of geometric models in applications with sparse data.  相似文献   

5.
This paper reports a novel method to track brain shift using a laser-range scanner (LRS) and nonrigid registration techniques. The LRS used in this paper is capable of generating textured point-clouds describing the surface geometry/intensity pattern of the brain as presented during cranial surgery. Using serial LRS acquisitions of the brain's surface and two-dimensional (2-D) nonrigid image registration, we developed a method to track surface motion during neurosurgical procedures. A series of experiments devised to evaluate the performance of the developed shift-tracking protocol are reported. In a controlled, quantitative phantom experiment, the results demonstrate that the surface shift-tracking protocol is capable of resolving shift to an accuracy of approximately 1.6 mm given initial shifts on the order of 15 mm. Furthermore, in a preliminary in vivo case using the tracked LRS and an independent optical measurement system, the automatic protocol was able to reconstruct 50% of the brain shift with an accuracy of 3.7 mm while the manual measurement was able to reconstruct 77% with an accuracy of 2.1 mm. The results suggest that a LRS is an effective tool for tracking brain surface shift during neurosurgery.  相似文献   

6.
One major problem with nonrigid image registration techniques is their high computational cost. Because of this, these methods have found limited application to clinical situations where fast execution is required, e.g., intraoperative imaging. This paper presents a parallel implementation of a nonrigid image registration algorithm. It takes advantage of shared-memory multiprocessor computer architectures using multithreaded programming by partitioning of data and partitioning of tasks, depending on the computational subproblem. For three different biomedical applications (intraoperative brain deformation, contrast-enhanced MR mammography, intersubject brain registration), the scaling behavior of the algorithm is quantitatively analyzed. The method is demonstrated to perform the computation of intra-operative brain deformation in less than a minute using 64 CPUs on a 128-CPU shared-memory supercomputer (SGI Origin 3800). It is shown that its serial component is no more than 2% of the total computation time, allowing a speedup of at least a factor of 50. In most cases, the theoretical limit of the speedup is substantially higher (up to 132-fold in the application examples presented in this paper). The parallel implementation of our algorithm is, therefore, capable of solving nonrigid registration problems with short execution time requirements and may be considered an important step in the application of such techniques to clinically important problems such as the computation of brain deformation during cranial image-guided surgery.  相似文献   

7.
Image-guided liver surgery requires the ability to identify and compensate for soft tissue deformation in the organ. The predeformed state is represented as a complete three-dimensional surface of the organ, while the intraoperative data is a range scan point cloud acquired from the exposed liver surface. The first step is to rigidly align the coordinate systems of the intraoperative and preoperative data. Most traditional rigid registration methods minimize an error metric over the entire data set. In this paper, a new deformation-identifying rigid registration (DIRR) is reported that identifies and aligns minimally deformed regions of the data using a modified closest point distance cost function. Once a rigid alignment has been established, deformation is accounted for using a linearly elastic finite element model (FEM) and implemented using an incremental framework to resolve geometric nonlinearities. Boundary conditions for the incremental formulation are generated from intraoperatively acquired range scan surfaces of the exposed liver surface. A series of phantom experiments is presented to assess the fidelity of the DIRR and the combined DIRR/FEM approaches separately. The DIRR approach identified deforming regions in 90% of cases under conditions of realistic surgical exposure. With respect to the DIRR/FEM algorithm, subsurface target errors were correctly located to within 4 mm in phantom experiments.  相似文献   

8.
Computerized automatic registration of MR-PET images of the brain is of significant interest for multimodality brain image analysis. Here, the authors discuss the principal axes transformation for registration of three-dimensional MR and PET images. A new brain phantom designed to test MR-PET registration accuracy determines that the principal axes registration (PAR) method is accurate to within an average of 1.37 mm with a standard deviation of 0.78 mm. Often the PET scans are not complete in the sense that the PET volume does not match the respective MR volume. The authors have developed an iterative PAR (IPAR) algorithm for such cases. Partial volumes of PET can be accurately registered to the complete MR volume using the new iterative algorithm. The quantitative and qualitative analyses of MR-PET image registration are presented and discussed. Results show that the new PAR algorithm is accurate and practical in MR-PET correlation studies  相似文献   

9.
Brain deformation models have proven to be a powerful tool in compensating for soft tissue deformation during image-guided neurosurgery. The accuracy of these models can be improved by incorporating intraoperative measurements of brain motion. We have designed and implemented a passive intraoperative stereo vision system capable of estimating the three-dimensional shape of the surgical scene in near real-time. This intraoperative shape is compared with the cortical surface in the co-registered preoperative magnetic resonance (MR) volume for the estimation of the cortical motion resulting from the open cranial surgery. The estimated cortical motion is then used to guide a full brain model, which updates a preoperative MR volume. We have found that the stereo vision system is accurate to within approximately 1 mm. Based on data from two representative clinical cases, we show that stereopsis guidance improves the accuracy of brain shift compensation both at and below the cortical surface.  相似文献   

10.
Brain shift estimation in image-guided neurosurgery using 3-D ultrasound   总被引:7,自引:0,他引:7  
Intraoperative brain deformation is one of the most important causes affecting the overall accuracy of image-guided neurosurgical procedures. One option for correcting for this deformation is to acquire three-dimensional (3-D) ultrasound data during the operation and use this data to update the information provided by the preoperatively acquired MR data. For 12 patients 3-D ultrasound images have been reconstructed from freehand sweeps acquired during neurosurgical procedures. Ultrasound data acquired prior to and after opening the dura, but prior to surgery, have been quantitatively compared to the preoperatively acquired MR data to estimate the rigid component of brain shift at the first stages of surgery. Prior to opening the dura the average brain shift measured was 3.0 mm parallel to the direction of gravity, with a maximum of 7.5 mm, and 3.9 mm perpendicular to the direction of gravity, with a maximum of 8.2 mm. After opening the dura the shift increased on average 0.2 mm parallel to the direction of gravity and 1.4 mm perpendicular to the direction of gravity. Brain shift can be detected by acquiring 3-D ultrasound data during image-guided neurosurgery. Therefore, it can be used as a basis for correcting image data and preoperative planning for intraoperative deformations.  相似文献   

11.
The accuracy of image-guided neurosurgery generally suffers from brain deformations due to intraoperative changes. These deformations cause significant changes of the anatomical geometry (organ shape and spatial interorgan relations), thus making intraoperative navigation based on preoperative images error prone. In order to improve the navigation accuracy, we developed a biomechanical model of the human head based on the finite element method, which can be employed for the correction of preoperative images to cope with the deformations occurring during surgical interventions. At the current stage of development, the two-dimensional (2-D) implementation of the model comprises two different materials, though the theory holds for the three-dimensional (3-D) case and is capable of dealing with an arbitrary number of different materials. For the correction of a preoperative image, a set of homologous landmarks must be specified which determine correspondences. These correspondences can be easily integrated into the model and are maintained throughout the computation of the deformation of the preoperative image. The necessary material parameter values have been determined through a comprehensive literature study. Our approach has been tested for the case of synthetic images and yields physically plausible deformation results. Additionally, we carried out registration experiments with a preoperative MR image of the human head and a corresponding postoperative image simulating an intraoperative image. We found that our approach yields good prediction results, even in the case when correspondences are given in a relatively small area of the image only.  相似文献   

12.
3-D/2-D registration of CT and MR to X-ray images   总被引:6,自引:0,他引:6  
A crucial part of image-guided therapy is registration of preoperative and intraoperative images, by which the precise position and orientation of the patient's anatomy is determined in three dimensions. This paper presents a novel approach to register three-dimensional (3-D) computed tomography (CT) or magnetic resonance (MR) images to one or more two-dimensional (2-D) X-ray images. The registration is based solely on the information present in 2-D and 3-D images. It does not require fiducial markers, intraoperative X-ray image segmentation, or timely construction of digitally reconstructed radiographs. The originality of the approach is in using normals to bone surfaces, preoperatively defined in 3-D MR or CT data, and gradients of intraoperative X-ray images at locations defined by the X-ray source and 3-D surface points. The registration is concerned with finding the rigid transformation of a CT or MR volume, which provides the best match between surface normals and back projected gradients, considering their amplitudes and orientations. We have thoroughly validated our registration method by using MR, CT, and X-ray images of a cadaveric lumbar spine phantom for which "gold standard" registration was established by means of fiducial markers, and its accuracy assessed by target registration error. Volumes of interest, containing single vertebrae L1-L5, were registered to different pairs of X-ray images from different starting positions, chosen randomly and uniformly around the "gold standard" position. CT/X-ray (MR/ X-ray) registration, which is fast, was successful in more than 91% (82% except for L1) of trials if started from the "gold standard" translated or rotated for less than 6 mm or 17 degrees (3 mm or 8.6 degrees), respectively. Root-mean-square target registration errors were below 0.5 mm for the CT to X-ray registration and below 1.4 mm for MR to X-ray registration.  相似文献   

13.
We created a method for three-dimensional (3-D) registration of medical images (e.g., magnetic resonance imaging (MRI) or computed tomography) to images of physical tissue sections or to other medical images and evaluated its accuracy. Our method proved valuable for evaluation of animal model experiments on interventional-MRI guided thermal ablation and on a new localized drug delivery system. The method computes an optimum set of rigid body registration parameters by minimization of the Euclidean distances between automatically chosen correspondence points, along manually selected fiducial needle paths, and optional point landmarks, using the iterative closest point algorithm. For numerically simulated experiments, using two needle paths over a range of needle orientations, mean voxel displacement errors depended mostly on needle localization error when the angle between needles was at least 20 degrees. For parameters typical of our in vivo experiments, the mean voxel displacement error was < 0.35 mm. In addition, we determined that the distance objective function was a useful diagnostic for predicting registration quality. To evaluate the registration quality of physical specimens, we computed the misregistration for a needle not considered during the optimization procedure. We registered an ex vivo sheep brain MR volume with another MR volume and tissue section photographs, using various combinations of needle and point landmarks. Mean registration error was always < or = 0.54 mm for MR-to-MR registrations and < or = 0.52 mm for MR to tissue section registrations. We also applied the method to correlate MR volumes of radio-frequency induced thermal ablation lesions with actual tissue destruction. In this case, in vivo rabbit thigh volumes were registered to photographs of ex vivo tissue sections using two needle paths. Mean registration errors were between 0.7 and 1.36 mm over all rabbits, the largest error less than two MR voxel widths. We conclude that our method provides sufficient spatial correspondence to facilitate comparison of 3-D image data with data from gross pathology tissue sections and histology.  相似文献   

14.
Brain shift during open cranial surgery presents a challenge for maintaining registration with image-guidance systems. Ultrasound (US) is a convenient intraoperative imaging modality that may be a useful tool in detecting tissue shift and updating preoperative images based on intraoperative measurements of brain deformation. We have quantitatively evaluated the ability of spatially tracked freehand US to detect displacement of implanted markers in a series of three in vivo porcine experiments, where both US and computed tomography (CT) image acquisitions were obtained before and after deforming the brain. Marker displacements ranged from 0.5 to 8.5 mm. Comparisons between CT and US measurements showed a mean target localization error of 1.5 mm, and a mean vector error for displacement of 1.1 mm. Mean error in the magnitude of displacement was 0.6 mm. For one of the animals studied, the US data was used in conjunction with a biomechanical model to nonrigidly re-register a baseline CT to the deformed brain. The mean error between the actual and deformed CT's was found to be on average 1.2 and 1.9 mm at the marker locations depending on the extent of the deformation induced. These findings indicate the potential accuracy in coregistered freehand US displacement tracking in brain tissue and suggest that the resulting information can be used to drive a modeling re-registration strategy to comparable levels of agreement.  相似文献   

15.
During neurosurgery, nonrigid brain deformation may affect the reliability of tissue localization based on preoperative images. To provide accurate surgical guidance in these cases, preoperative images must be updated to reflect the intraoperative brain. This can be accomplished by warping these preoperative images using a biomechanical model. Due to the possible complexity of this deformation, intraoperative information is often required to guide the model solution. In this paper, a linear elastic model of the brain is developed to infer volumetric brain deformation associated with measured intraoperative cortical surface displacement. The developed model relies on known material properties of brain tissue, and does not require further knowledge about intraoperative conditions. To provide an initial estimation of volumetric model accuracy, as well as determine the model's sensitivity to the specified material parameters and surface displacements, a realistic brain phantom was developed. Phantom results indicate that the linear elastic model significantly reduced localization error due to brain shift, from > 16 mm to under 5 mm, on average. In addition, though in vivo quantitative validation is necessary, preliminary application of this approach to images acquired during neocortical epilepsy cases confirms the feasibility of applying the developed model to in vivo data.  相似文献   

16.
Intraoperative brain deformations decrease accuracy in image-guided neurosurgery. Approaches to quantify these deformations based on 3-D reconstruction of cortectomy surfaces have been described and have shown promising results regarding the extrapolation to the whole brain volume using additional prior knowledge or sparse volume modalities. Quantification of brain deformations from surface measurement requires the registration of surfaces at different times along the surgical procedure, with different challenges according to the patient and surgical step. In this paper, we propose a new flexible surface registration approach for any textured point cloud computed by stereoscopic or laser range approach. This method includes three terms: the first term is related to image intensities, the second to Euclidean distance, and the third to anatomical landmarks automatically extracted and continuously tracked in the 2-D video flow. Performance evaluation was performed on both phantom and clinical cases. The global method, including textured point cloud reconstruction, had accuracy within 2 mm, which is the usual rigid registration error of neuronavigation systems before deformations. Its main advantage is to consider all the available data, including the microscope video flow with higher temporal resolution than previously published methods.   相似文献   

17.
We present a method for alignment of an interventional plan to optically tracked two-dimensional intraoperative ultrasound (US) images of the liver. Our clinical motivation is to enable the accurate transfer of information from three-dimensional preoperative imaging modalities [magnetic resonance (MR) or computed tomography (CT)] to intraoperative US to aid needle placement for thermal ablation of liver metastases. An initial rigid registration to intraoperative coordinates is obtained using a set of US images acquired at maximum exhalation. A preprocessing step is applied to both the preoperative images and the US images to produce evidence of corresponding structures. This yields two sets of images representing classification of regions as vessels. The registration then proceeds using these images. The preoperative images and plan are then warped to correspond to a single US slice acquired at an unknown point in the breathing cycle where the liver is likely to have moved and deformed relative to the preoperative image. Alignment is constrained using a patient-specific model of breathing motion and deformation. Target registration error is estimated by carrying out simulation experiments using resliced MR volumes to simulate real US and comparing the registration results to a "bronze-standard" registration performed on the full MR volume. Finally, the system is tested using real US and verified using visual inspection.  相似文献   

18.
A new method of model registration is proposed using graphical templates. A decomposable graph of landmarks is chosen in the template image. All possible candidates for these landmarks are found in the data image using robust relational local operators. A dynamic programming algorithm on the template graph finds the optimal match to a subset of the candidate points in polynomial time. This combination-local operators to describe points of interest/landmarks and a graph to describe their geometric arrangement in the plane-yields fast and precise matches of the model to the data with no initialization required. In addition, it provides a generic tool box for modeling shape in a variety of applications. This methodology is applied in the context of T2-weighted magnetic resonance (MR) axial and sagittal images of the brain to identify specific anatomies  相似文献   

19.
The existing differential approaches for localization of 3-D anatomic point landmarks in 3-D images are sensitive to noise and usually extract numerous spurious landmarks. The parametric model-based approaches are not practically usable for localization of landmarks that can not be modeled by simple parametric forms. Some dedicated methods using anatomic knowledge to identify particular landmarks are not general enough to cope with other landmarks. In this paper, we propose a model-based, semi-global segmentation approach to automatically localize 3-D point landmarks in neuroimages. To localize a landmark, the semi-global segmentation (meaning the segmentation of a part of the studied structure in a certain neighborhood of the landmark) is first achieved by an active surface model, and then the landmark is localized by analyzing the segmented part only. The joint use of global model-to-image registration, semi-global structure registration, active surface-based segmentation, and point-anchored surface registration makes our method robust to noise and shape variation. To evaluate the method, we apply it to the localization of ventricular landmarks including curvature extrema, centerline intersections, and terminal points. Experiments with 48 clinical and 18 simulated magnetic resonance (MR) volumetric images show that the proposed approach is able to localize these landmarks with an average accuracy of 1 mm (i.e., at the level of image resolution). We also illustrate the use of the proposed approach to cortical landmark identification and discuss its potential applications ranging from computer-aided radiology and surgery to atlas registration with scans.   相似文献   

20.
In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号