首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
严寒地区多数农村住宅建筑围护结构热损失严重,造成其采暖能耗增加,强化建筑围护结构的保温性是提高建筑采暖效率的方式之一。以位于严寒地区的安达市某传统农宅为研究对象,采用EnergyPlus对该住宅围护结构的保温性能进行研究,并分析了建筑能耗情况,获得了建筑墙体、玻璃、屋顶等围护结构部位采用保温后的节能效率。研究结果表明:安达地区节能效率较好的墙体和屋顶保温材料为XPS保温板、玻璃窗结构形式为6mm+12mm+6mmLow-E低辐射玻璃;传统农宅采用建筑保温材料后,其节能率可达72.0%,从而降低了农村住宅采暖能耗,并可维持室内良好的热环境。  相似文献   

2.
王君  王矗垚  季杰 《新能源进展》2021,9(4):300-310
针对新徽派民居中存在的建筑能耗大、热舒适性差及室内空气品质低等问题,探索在保持建筑典型特点的前提下,将太阳能光伏光热建筑一体化(BIPV/T)新技术和新方法在新徽派民居中综合运用。文章主要基于作者团队最新的研究,探讨了兼顾“黛瓦”的光伏瓦技术、兼顾“粉壁”的集热-除甲醛多效墙体技术、兼顾“马头墙”的通风-除菌杀毒多效太阳能烟囱技术、兼顾“青砖”的光伏装饰技术、兼顾“门楼”的平板型PV/T技术、兼顾“花格窗”的碲化镉光伏通风窗技术在新徽派民居中应用的可行性。通过一典型案例设计,基于Energyplus软件对其全年发电量、热水、室温、房间冷热负荷及通风性能进行模拟研究。结果表明,BIPV/T技术可以在发电的同时降低空调负荷、改善室内环境,节能效果显著。  相似文献   

3.
In this study, a new method of using the earth‐air heat exchangers to reduce energy consumption in buildings is discussed. The idea is to couple the EAHE with the condenser of a residential air conditioning system to enhance the effectiveness of the latter. Under the climatic conditions of high temperature in summer (south‐eastern region of Algeria), which can sometimes exceed 50 °C, what makes the heat exchange between the air conditioner and the external environment very difficult in addition to the problem of thermal comfort and the cost of energy consumption. Conducting a simulation by the TRNSYS software that allows to couple the model of the EAHE with the condenser of a residential air conditioner and connect the system with a building. The results show a clear reduction in the energy consumed by this system in connection with the direct use of the air conditioner and increase air conditioning efficiency, coefficient of performance, and energy efficiency rating. In this paper the Hollmuller model was ameliorated and the obtained results are in concord with it. The system is capable of resolving the problem of mal cooling of buildings by air conditioners under critical climate conditions, in addition to lowering the heat output of the condenser, and reducing its effect on the environment.  相似文献   

4.
As a result of rapid economic growth in the last several decades, energy issue is becoming more and more important in today’s world because of a possible energy shortage in the future; the usage of residential electricity has increased rapidly in China and building energy efficiency is included as one of the 10 key programs targeting energy efficiency improvement in the 11th Five-Year Plan. In response to the growing concerns about energy conservation in residential buildings and its implications for the environment, systematic evaluation on energy and thermal Performance for residential envelops (EETP) is put forward to assess the energy efficiency of envelop designs and to calculate the energy consumption of cooling and heating systems. Hot summer and cold winter zone of China was selected for EETP analysis because of its rigorous climatic and huge energy consumption. The correlations between EETPs and electricity consumptions in cooling season, heating season, and the whole year were built in Shanghai, Changsha, Shaoguan and Chengdu, which represent A, B, C and D subzone of hot summer and cold winter zone in China, respectively. Illustrations indicate that the algorithm is simple and effective, energy and thermal performance of residential envelopes can be evaluated easily. The maximum allowable values of EETPs were determined when just meeting the compulsory indices of Standard JGJ134-2001, the corresponding allowable EETPs were also gained when achieving different energy-saving degrees on basis of it. EETP method can suggest possible ways to improve the energy efficiency for envelope designs of new building and retrofits of existing buildings and provide governments some useful information for the establishment of new policy on energy efficiency buildings. It has important meanings to carry out sustainable residential building designs with high thermal comfort and low energy consumption.  相似文献   

5.
To analyze the effect of energy conservation policies on energy consumption of residential buildings, the characteristics of energy consumption and indoor thermal comfort were investigated in detail in Tianjin, China, based on official statistical yearbook and field survey data. A comprehensive survey of 305 households indicates that the mean electricity consumption per household is 3215 kWh/a, in which annual cooling electricity consumption is 344 kWh/a, and the mean natural gas consumption for cooking is 103.2 m3/a. Analysis of 3966 households data shows that space heating average intensity of residential buildings designed before 1996 is 133.7 kWh/(m2·a), that of buildings designed between 1996 and 2004 is 117.2 kWh/(m2·a), and that of buildings designed after 2004 is 105.0 kWh/(m2·a). Apparently, enhancing the performance of envelops is effective in reducing space heating intensity. Furthermore, the results of questionnaires show that 18% of the residents feel slightly warm and hot respectively, while 3% feel slightly cold in winter. Therefore, the electricity consumption in summer will rise for meeting indoor thermal comfort.  相似文献   

6.
Measurements of the thermal behaviour of two residential buildings equipped with a green roof system have been performed in Athens, Greece. Experimental data have been used to calibrate detailed simulation tools and the specific energy and environmental performance of the planted roofs system has been estimated in detail. Simulations have been performed for free‐floating and thermostatically controlled conditions. The expected energy benefits as well as the possible improvements of the indoor thermal comfort have been assessed. It is found that green roofs have a limited contribution to the heating demand of insulated buildings operating under the Mediterranean climate. On the contrary, the green roof system is found to contribute highly to reduce the cooling load of thermostatically controlled buildings. For the considered residential buildings, a cooling load decrease of about 11% has been calculated. In parallel, it is found that green roofs contribute to improve thermal comfort in free‐floating buildings during the summer period. The expected maximum decrease of the indoor air and roof surface temperatures is close to 0.6°C. Such a decrease contributes to reduce by 0.1 the summer absolute Predicted Mean Vote Comfort Index levels in the building. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Both cool roof and phase change thermal storage are promising technologies in decreasing building energy consumption. Combining these two technologies is likely to further enhance the thermal comfort of the building as well as reduce air condition loads. In this paper, the cooling performance and energy-saving effects of four types of roof (normal roof, phase change material [PCM] roof, cool roof, and cool PCM roof [cool roof coupled with PCM]) were investigated under a simulated sunlight. Experimental results indicate that compared with normal roof, the other three roofs are able to narrow the indoor temperature fluctuation and decrease the heat flow entering into the room. Among them, cool PCM roof gave the best energy-saving effect that can lower the indoor temperature and heat entering into rooms by 6.6°C and 52.9%, respectively. Besides, the PCM location, PCM thickness, and insulation thickness exerted great impacts on the cooling performance of the roof. Placing the PCM on the internal layer beneath the extruded polystyrene (XPS) insulation board can make the indoor temperature 1.2°C lower than that on the middle layer. Although thicker PCM panels or insulation boards can provide a better thermal insulation, 5 mm in PCM thickness and 20 mm in insulation thickness are enough to guarantee the indoor temperature of cool PCM roof system at a comfortable range (22°C-28°C) for a whole day. These findings will give guidance in designing buildings with a light and compact roof structure to decrease energy consumption and improve comfort level.  相似文献   

8.
针对咸阳市某节能住宅小区供冷供热的需求,依据建筑节能规范指标要求,进行围护结构热工设计与计算。结合当地丰富的浅层地下水资源条件,确定了利用地下水源热泵系统对该住宅小区进行供冷供热方案。对系统经济性和节能性进行计算与分析,对比分析了建筑围护结构和空调系统对建筑节能的贡献率,指出了建筑节能集成效益的优势。  相似文献   

9.
叙述了辽宁地区既有住宅的现状及改造的意义,提出,具体的技术改造措施。  相似文献   

10.
建筑形式对太阳能热利用的影响研究   总被引:1,自引:0,他引:1  
简毅文 《太阳能学报》2007,28(1):108-112
以上海地区的住宅建筑为研究对象,通过模拟分析的方法,采用DeST软件计算确定建筑逐时的采暖、空调能耗,研究分析窗墙比对建筑全年采暖能耗、全年空调能耗以及全年采暖、空调总能耗的影响规律,研究分析太阳辐射热增加所导致采暖能耗的降低幅度与外围护结构保温性能两者之间的定量关系。计算结果表示在夏季外窗遮阳和夜间通风的条件下,加大南向窗墙比可增强太阳能的热利用效率,降低建筑全年的采暖、空调总能耗;而外围护结构保温性能的增强则可降低室内向室外散热的程度,相应提高对冬季太阳辐射的热利用程度,从而达到降低采暖能耗的目的。  相似文献   

11.
The main objective of this study is to develop and test hybrid ventilation systems and control strategies that are suitable for residential buildings. Two ventilation systems were modelled: a mechanical extract ventilation system (called the reference system) and a hybrid low pressure ventilation system that can support two different types of demand control strategies (occupancy detection and CO2 concentration). The newly developed models were assembled with the existing thermal models of the SIMBAD Building and HVAC Toolbox developed by the CSTB.A single family house located in Athens (Greece), Nice (France), Trappes (France) and finally Stockholm (Sweden) was considered as the case study. Yearly simulations were performed to assess the performance of the hybrid ventilation control strategies. The assessment criteria used are related to indoor air quality, thermal comfort, energy consumption and stability of control strategies. The results show that the low pressure ventilation system can improve the indoor air quality and reduce the fan energy consumption compared to the reference system while maintaining the same building energy consumption for heating.  相似文献   

12.
The PASCOOL program was the most important European project on passive cooling of buildings. The project addressed topics included solar control, the combined effect of ventilation and thermal mass, thermal comfort during summer and the potential of natural cooling techniques. PASCOOL put in evidence also the axes towards which future research on passive cooling should be oriented. This research, giving the continuously increasing trend of energy consumption for cooling purposes, is absolutely necessary in order to take advantage of the complete potential that passive cooling can offer to buildings while maintaining the living standards, health and comfort of the occupants. This paper presents these future issues that comprise (a) research on the microclimatic scale in order to address the impact of outdoor environment on the cooling load of buildings, (b) investigation of comfort requirements under transient conditions during summer, (c) research on natural ventilation in urban environments and the impact of outdoor pollution on indoor air quality, (d) development of alternative cooling systems and techniques, (e) development of integrating design concepts optimising the use of solar heating, passive cooling and natural light in buildings.  相似文献   

13.
The objective of this study is to conduct a realistic prediction of the potential energy saving for using water cooled air conditioners in residential buildings in Hong Kong. A split type air conditioner with air cooled (AAC) and water cooled (WAC) options was set up for experimental study at different indoor and outdoor conditions. The cooling output, power consumption and coefficient of performance (COP) of the two options were measured and calculated for comparison. The experimental results showed that the COP of the WAC is, on average, 17.4% higher than that of the AAC. The results were used to validate the mathematical models formulated for predicting the performance of WACs and AACs at different operating conditions and load characteristics. While the development of the mathematical models for WACs was reported in an earlier paper, this paper focuses on the experimental works for the AAC. The mathematical models were further used to predict the potential energy saving for application of WACs in residential buildings in Hong Kong. The predictions were based on actual building developments and realistic operating characteristics. The overall energy savings were estimated to be around 8.7% of the total electricity consumption for residential buildings in Hong Kong. Wider use of WACs in subtropical cities is, therefore, recommended.  相似文献   

14.
Energy costs and environmental concerns have made energy optimisation a viable option for buildings. Energy‐efficient heating systems together with an effective use of buildings thermal mass and tightness have a significant impact on the energy requirement and on the possibility for sizeable running cost savings. In this study we use the simulation tool TRNSYS‐EES to model and analyse the performance of a residential house and the low‐temperature heating system that serves its thermal needs. The building is a single‐family house with controlled ventilation and the chosen heating system is a hydronic floor heating system connected to an exhaust air heat pump. The aim of the simulation is to study the performance of the building, the heating system and the controls in an integrated manner. Overall, the results indicate that the energy efficiency issue implicates system design and system thinking concerns as well as techno‐economic difficulties. The controls and the choice of the operation mode are of a great importance. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
随着人们对室内环境要求的提高,我国农村住宅建筑(简称:农宅)的能源消耗逐年增加。为减少农宅能耗,降低二氧化碳排放,满足节能需求,提出一种附加阳光间的被动农宅形式。通过EnergyPlus对该附加阳光间农宅进行了分析,获得了其采暖期的建筑能耗,研究了附加阳光间玻璃层数、填充气体及空气层厚度等因素对农宅能耗的影响,并优化了附加阳光间的玻璃结构。研究结果发现,与传统农宅相比,在农宅南侧附加阳光间,可减少建筑采暖能耗1115.64 kw·h。双层玻璃内填充气体种类和空气厚度对建筑能耗影响较大。其中,填充氪气时建筑能耗最低,空气层厚度9mm时建筑节能效果最好。  相似文献   

16.
改进和推广火炕这种在农村住宅中传统的、高效节能的辐射供暖系统,使黑龙江省农村住宅实现生态环保、健康舒适,方法是对佳木斯地区典型村镇住宅现状进行了实地调研,总结了采用不同结构体系及建材的住宅的供暖方式、保温效果、平均能耗以及火炕利用,建筑造价及其耐久性等情况。结果表明农村住宅在冬季仍然普遍采用火炕供暖,但热源单一,构造陈旧等原因使之没能充分发挥其优势;同时,围护结构的热工性能也对室内气候状况影响很大。结论部分提出在农村辐射供暖住宅中综合应用太阳能火炕、地炕和火墙以及围护结构生态节能等切实可行的改进途径,为本省农村辐射供暖生态住宅建设提供必要的参考。  相似文献   

17.
A prototype microcomputer-controlled thermostat was developed that can manage airflow according to cooling the needs in a building and the resources in the environment. This intelligent control system measures both indoor and outdoor temperature and uses decision rules to control a whole-house fan, in addition to the furnace and air conditioner. No such residential thermostat is currently commercially available. This paper presents the controller strategy that optimizes cooling with outdoor air. This paper also quantifies the effects of modifying the amount of thermal mass and the window area on indoor comfort when using this controller. These test confirm that smaller windows and more mass performed better than larger windows and less mass, and that higher volumes of controlled ventilation outperformed fixed ventilation rates.  相似文献   

18.
According to the International Energy Agency (IEA), the energy demand for the building sector constituted about 25.3% of the final energy use in South Korea. The energy demand for residential buildings counts for 50.3% of the building sector and has also increased by 2.9 percent every year. The Korean government has shifted focus and is now promoting energy efficiency within the building sector and has set long-term energy conservation goals.Despite these efforts to minimize building energy, the Korean government has changed the building regulation to allow remodeling of the balcony space as a living space. Remodeling the balcony space to become an indoor space means that a buffer space for the outdoor environment is lost, causing thermal discomfort and discomfort glare and moreover, increasing the heating and cooling energy demand in residential buildings. Also, it results in an increase in building energy demand in South Korea.In this study, the effect of the alteration of balcony space on the indoor thermal environment and the heating and cooling energy demand of residential buildings in Korea were investigated by field measurement and simulation. From the measurement results, the indoor temperature of the condition without a balcony was 0.8 °C lower than that with a balcony. The heating and cooling load of the unit without the balcony space was 39% and 22% higher, respectively, than that of the unit with the balcony space. This increase results in considerable energy loss in the national scale and the ratio will be 0.3% of the final energy use in Korea. Also, it represents about 1.3% of the final energy use within the building sector of Korea.  相似文献   

19.
The seasonal energy requirements and fuel consumption for heating purposes in residential buildings are influenced by the architectural design, construction materials characteristics, meteorological temperature measurements, internal gains and air exchange rate of the building. The goal of this study is to assess the thermal performance and environmental impact of residential buildings’ in Morocco taking into account all these factors and considering two sources of energy: liquefied petroleum gas (LPG) and electricity. The study concludes that the heating energy requirements for the prototype building vary between 2 and 253 kWh/m2.year depending on localities, glazing type, glazing area percentage, the internal gains and the air exchange rates. The electricity consumption is 2.6 times greater than that of LPG in terms of kg oil equivalent, and by using LPG instead of electricity the emissions of greenhouse gases can be 3.4 times reduced.  相似文献   

20.
隽军  杨妩姗 《节能》2012,31(2):51-54
结合工作实践,发现西安市居住建筑类项目存在不同评估单位计算的年综合能耗量数值差异很大的现象,经比较分析发现差异的主要原因是建筑物采暖耗能量评估计算依据的标准规范不一致。通过对比两种计算方法的内容与指标,认为《城镇供热管网设计规范》采暖热负荷推荐值与项目具体建筑物体形系数、热工性能参数等数值无关,对单体建筑物而言不具有针对性,不是唯一的。因此,建议以《严寒和寒冷地区居住建筑节能设计标准》为节能评估计算依据,方符合国家推行固定资产投资项目节能评估与审查的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号