首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently, many bandwidth-intensive applications require multicast services for efficiency purposes. In particular, as wavelength division multiplexing (WDM) technique emerges as a promising solution to meet the rapidly growing demands on bandwidth in present communication networks, supporting multicast at the WDM layer becomes an important yet challenging issue. In this paper, we introduce a systematic approach to analyzing the multicast connection capacity of WDM switching networks with limited wavelength conversion. We focus on the practical all-optical limited wavelength conversion with a small conversion degree d (e.g., d=2 or 3), where an incoming wavelength can be switched to one of the d outgoing wavelengths. We then compare the multicast performance of the network with limited wavelength conversion to that of no wavelength conversion and full wavelength conversion. Our results demonstrate that limited wavelength conversion with small conversion degrees provides a considerable fraction of the performance improvement obtained by full wavelength conversion over no wavelength conversion. We also present an economical multistage switching architecture for limited wavelength conversion. Our results indicate that the multistage switching architecture along with limited wavelength conversion of small degrees is a cost-effective design for WDM multicast switching networks.  相似文献   

2.
This paper proposes optical wavelength division multiplexed (WDM) networks with limited wavelength conversion that can efficiently support lightpaths (connections) between nodes. Each lightpath follows a route in a network and must be assigned a channel on each link along the route. The load λmax of a set of lightpaths is the maximum over all links of the number of lightpaths that use the link. At least λmax wavelengths will be needed to assign channels to the lightpaths. If the network has full wavelength conversion capabilities, then λmax wavelengths are sufficient to perform the channel assignment. Ring networks with fixed wavelength conversion capability within the nodes are proposed that can support all lightpath sets with load λmax at most W-1, where W is the number of wavelengths in each link. Ring networks with a small additional amount of wavelength conversion capability within the nodes are also proposed that allow the support of any set of lightpaths with load λmax at most W. A star network is also proposed with fixed wavelength conversion capability at its hub node that can support all lightpath sets with load λmax at most W. These results are extended to tree networks and networks with arbitrary topologies. This provides evidence that significant improvements in traffic-carrying capacity can be obtained in WDM networks by providing very limited wavelength conversion capability within the network  相似文献   

3.
In simple wavelength-division multiplexed (WDM) networks, a connection must be established along a route using a common wavelength on all of the links along the route. This constraint may be removed by the introduction of wavelength converters, which are devices which take the data modulated on an input wavelength and transfer it to a different output wavelength. Wavelength converters thus improve network blocking performance. However, the introduction of wavelength converters into WDM cross-connects increases the hardware cost and complexity. Thus, it is important to establish precisely what advantages wavelength converters offer WDM networks. There has been considerable interest in the literature in the performance improvements offered by the introduction of wavelength converters into dynamically-reconfigurable WDM networks. This article provides a review of the conclusions drawn from these investigations. The performance improvements offered by wavelength converters depend on a number of factors, including network topology and size, the number of wavelengths, and the routing and wavelength assignment algorithms used. We discuss these factors here. However, it has been shown that wavelength converters offer only modest performance improvements in many networks. We also consider networks with limited wavelength conversion, in which the set of allowable conversions at a network node is constrained by having limited numbers of wavelength converters, or by using non-ideal wavelength converters. Limited wavelength conversion has been shown to provide performance which is often close to that achieved with ideal wavelength conversion in networks with tunable transmitters and receivers.  相似文献   

4.
波分复用波长路由节点的阻塞特性分析   总被引:4,自引:0,他引:4  
利用概率统计理论的方法,从节点层次上定量分析了节点规模、复用波长数目以及波长转换对波分复用(WDM)波长路由网络中波长路由节点的影响。提出了基于概率统计的节点阻塞模型。数值结果突出表明波长转换能力越强的全光节点,其性能越优。为了提高网络资源的使用效率并增强全光网络的灵活性,必须实现全光网络中的虚波长路由波长转换器。通过数值计算找到了阻塞性能和代价的折中,研究中发现配置较低波长转换能力波长转换器的波长路由节点将会具备更强的性价比优势,当前在构建光通信系统时使用弱波长转换能力的光节点更可行。  相似文献   

5.
This work presents the blocking performance of a single node with (full or limited) wavelength conversion in wavelength routed optical networks (WRON) based on the theory of probability. A blocking probability model is proposed. Particularly, we pay more attention to investigate wavelength routing node performance improvement by using the more feasible case of limited wavelength conversion. Based on our analytical model, we calculate the blocking probability for a single wavelength routing node and then make a simulation to validate it. It is shown that a node with low conversion degrees having a small number of fiber link ports and a large number of wavelengths per link is a more realistic choice.  相似文献   

6.
In this article, we consider the problem of traffic grooming in optical wavelength division multiplexed (WDM) mesh networks under static traffic conditions. The objective of this work is to minimize the network cost and in particular, the electronic port costs incurred for meeting a given performance objective. In earlier work, we have shown the benefits of limited grooming switch architectures, where only a subset of wavelengths in a network are equipped with expensive SONET Add Drop Multiplexers (SADM) that provide the grooming functionality. In this work, we also consider the wavelength conversion capability of such groomers. This can be achieved using a digital cross-connect (DCS) in the grooming switch to switch low-speed connections between the SADMs (and hence, between wavelengths). The grooming switch thus avoids the need for expensive optical wavelength converters. Based on these observations, we propose a limited conversion-based grooming architecture for optical WDM mesh networks. The local ports at every node in this architecture can be one of three types: an add-drop port, a grooming port that allows wavelength conversion or a grooming port that does not allow wavelength conversion. The problem studied is: given a static traffic model, where should the different ports be placed in a network? We formulate this as an optimization problem using an Integer Linear Programing (ILP) and present numerical results for the same. We also present a heuristic-based approach to solve the problem for larger networks.  相似文献   

7.
We study the benefit of reconfigurability for wavelength division multiplexed (WDM) ring networks with dynamic single-hubbed traffic. We show that the ability to reconfigure wavelength add-drop multiplexers helps to reduce the number of expensive line terminating equipment (LTEs) by a factor of W, where W is the number of wavelengths in the network. In addition, we show that for a general class of traffic, optical networks using reconfigurable wavelength add-drop multiplexers guarantee to be almost as bandwidth efficient as full wavelength add-drop networks, that is, opaque networks. For such traffic, we introduce several fast algorithms that achieve or approximate the optimal performance guarantees. The comparison between reconfigurable networks and opaque networks is quantified using a performance metric called capacity ratio, which captures the relative throughput performance of a reconfigurable network compared to the opaque network.  相似文献   

8.
Dynamic routing and wavelength assignment (RWA), which supports request arrivals and lightpath terminations at random times, is needed for rapidly changing traffic demands in wavelength division multiplexed, (WDM) networks. In this paper, a new distributed heuristic algorithm based on ant colony optimization for dynamic RWA is put forward. We consider the combination of route selection and wavelength assignment as a whole using a multilayer-graph model. Therefore, an extended multilayer-graph model for WDM networks with limited wavelength conversion is presented. Compared with other RWA methods, the Ant Colony heuristic algorithm can achieve better global network optimization and can reduce communication overhead cost of the networks. Simulation showed that a lower blocking probability and a more rational wavelength resource assignment can be achieved.  相似文献   

9.
讨论波分复用(WDM)的室内红外通信网络的结构和协议.在该网络中,网络节点可以同时使用多个波长传输数据.该无线传输方式需要一种新的媒体接入控制(Media Access Control,MAC)协议,使得网络节点波长能被动态地分配工作波长.讨论了这种协议的基本工作方式,简要分析了协议的数学模型,并在网络模拟软件NS2中7验证了该协议.通过对验证结果的分析,证明这种室内红外通信网络可以有效提高网络的总流量,提出的媒体接入控制协议是可行的.  相似文献   

10.
We present an analysis for both oblivious and adaptive routing in regular, all-optical networks with wavelength translation. Our approach is simple, computationally inexpensive, accurate for both low and high network loads, and the first to analyze adaptive routing with wavelength translation in wavelength division multiplexed (WDM) networks while also providing a simpler formulation of oblivious routing with wavelength translation. Unlike some previous analyses which use the link independence blocking assumption and the call dropping (loss) model (where blocked calls are cleared), we account for the dependence between the acquisition of wavelengths on successive links of a session's path and use a lossless model (where blocked calls are retried at a later time). We show that the throughput per wavelength increases superlinearly (as expected) as we increase the number of wavelengths per link, due both to additional capacity and more efficient use of this capacity; however, the extent of this superlinear increase in throughput saturates rather quickly to a linear increase. We also examine the effect that adaptive routing can have on performance. The analytical methodology that we develop can be applied to any vertex and edge symmetric topology, and with modifications, to any vertex symmetric (but not necessarily edge symmetric) topology. We find that, for the topologies we examine, providing at most one alternate link at every hop gives a per wavelength throughput that is close to that achieved by oblivious routing with twice the number of wavelengths per link. This suggests some interesting possibilities for network provisioning in an all-optical network. We verify the accuracy of our analysis for both oblivious and adaptive routing via simulations for the torus and hypercube networks  相似文献   

11.
To efficiently support the high rate and the high dynamicity of the traffic in metro networks, an optical packet-switched WDM ring, named ECOFRAME, is proposed. The key features of the proposed ring are optical transparency and statistical multiplexing of optical packets on parallel WDM channels. Such features can be exploited by properly allocating wavelengths and receivers. This paper aims to optimally dimension the unidirectional ECOFRAME rings. The dimensioning at minimum cost (i.e., for wavelengths and receivers) is modeled with an mixed-integer linear programming formulation. An heuristic algorithm is also proposed, and its performance is compared against the optimal solutions and bounds. When considering the receiver and wavelength cost, results indicate that trading the wavelengths for receivers allows cost saving of up to 75% with respect to WDM optical packet rings with a single dedicated wavelength per node (i.e., single receiver at each node).  相似文献   

12.
A new multihop wavelength division multiplexed (WDM) optical network with two wavelengths per node that can give the maximum throughput and minimum delay is proposed. It is called a “simple star” multihop network. This network has good characteristics in traffic balance and minimum average number of hops. Furthermore, unlike most existing networks, it does not impose an upper limit to the number of nodes  相似文献   

13.
This paper presents methods for recovering from channel failures, link failures, and node failures in wavelength-division multiplexed (WDM) point-to-point links and ring networks with limited wavelength conversion/switching capabilities at the nodes. Different recovery schemes are presented to handle each type of failure. Each scheme is evaluated based on the network hardware configuration required to support it and the performance and management overheads associated with fault recovery. Although similar recovery techniques have been used in conventional networks such as SONET, the constraints due to limited wavelength conversion require new and more complex solutions  相似文献   

14.
A detailed analytical traffic model for all-optical wavelength division multiplexing (WDM) photonic packet-switched networks is presented and the requirements for buffer size and link dimensions are analyzed. This paper shows that due to the topology, packets may generate traffic bottlenecks produced by a tendency of the routing scheme to send packets with different destinations through preferred paths. This effect increases the traffic load and, hence, the probability of blocking at the output links of specific routers in the network and, therefore, a large buffer depth or an increment in the number of fibers per link is required. Three router architectures are analyzed and it is shown that WDM all-optical router architectures with shared contention resolution resources are the best candidates to reduce hardware volume and cost of all-optical networks. It is shown that routers with a bank of completely shared wavelength converters (WCs) require a fraction of WCs compared to router architectures that use a WC per wavelength. This fraction depends on the location of the router, the network topology, and the traffic load in the network. However, in general terms, about 50% to 90% of WCs can be saved by architectures with shared wavelength-conversion resources. Also, it is shown that limited wavelength conversion degrees d=8 and d=10 in packet-switching routers with 16 and 32 wavelengths give the same probability of packet loss performance as full wavelength conversion  相似文献   

15.
Optical dense wavelength division multiplexed (DWDM) networks are an attractive candidate for the next generation Internet and beyond. In this paper, we consider routing and wavelength assignment in a wide area wavelength routed backbone network that employs circuit-switching. When a session request is received by the network, the routing and wavelength assignment (RWA) task is to establish a lightpath between the source and destination. That is, determine a suitable path and assign a set of wavelengths for the links on this path. We consider a link state protocol approach and use Dijkstras shortest path algorithm, suitably modified for DWDM networks, for computing the shortest paths. In [1] we proposed WDM aware weight functions that included factors such as available wavelengths per link, total wavelengths per link. In this paper, we present new weight functions that exploit the strong correlation between blocking probability and number of hops involved in connection setup to increase the performance of the network. We also consider alternate path routing that computes the alternate paths based on WDM aware weight functions. The impact of the weight functions on the blocking probability and delay is studied through discrete event simulation. The system parameters varied include number of network nodes, wavelengths, degree of wavelength conversion, and load. The results show that the weight function that incorporates both hop count and available wavelength provides the best performance in terms of blocking probability.  相似文献   

16.
A fundamental assumption underlying most studies of optical burst switched (OBS) networks is that full wavelength conversion is available throughout the network. In practice, however, economic and technical considerations are likely to dictate a more limited and sparse deployment of wavelength converters in the optical network. Therefore, we expect wavelength assignment policies to be an important component of OBS networks. In this paper, we explain why wavelength selection schemes developed for wavelength routed (circuit-switched) networks are not appropriate for OBS. We then develop a suite of adaptive and nonadaptive policies for OBS switches. We also apply traffic engineering techniques to reduce wavelength contention through traffic isolation. Our performance study indicates that, in the absence of full conversion capabilities, intelligent choices in assigning wavelengths to bursts at the source can have a profound effect on the burst drop probability in an OBS network.  相似文献   

17.
In previous years, with the rapid exhaustion of the capacity in wide area networks led by Internet and multimedia applications, demand for high bandwidth has been growing at a very fast pace. Wavelength-division multiplexing (WDM) is a promising technique for utilizing the huge available bandwidth in optical fibers. We consider efficient designs of nonblocking WDM permutation switching networks. Such designs require nontrivial extensions from the existing designs of electronic switching networks. We first propose several permutation models in WDM switching networks ranging from no wavelength conversion, to limited wavelength conversion, to full wavelength conversion, and analyze the network performance in terms of the permutation capacity and network cost, such as the number of optical cross-connect elements and the number of wavelength converters required for each model. We then give two methods for constructing nonblocking multistage WDM switching networks to reduce the network cost.  相似文献   

18.
In recent years, optical transport networks have evolved from interconnected SONET/WDM ring networks to mesh-based optical WDM networks. Time-slot wavelength switching is to aggregate the lower rate traffic at the time-slot level into a wavelength in order to improve bandwidth utilization. With the advancement of fiber-optics technologies, continual increase of fiber bandwidth and number of wavelengths in each fiber, it is possible to divide a wavelength in a fiber into time-slots, and further divide a time-slot into mini-slots so that the fiber bandwidth can be more efficiently utilized. This article proposes a router architecture with an electronic system controller to support optical data transfer at the mini-slot(s) of a time-slot in a wavelength for each hop of a route. The proposed router architecture performs optical circuit switching and does not use any wavelength converter. Each node in the mini-slot TDM WDM optical network consists of the proposed router architecture. Three different network topologies are used to demonstrate the effectiveness and behavior of this type of network in terms of blocking probability and throughput.  相似文献   

19.
基于节约网络资源和降低网络的阻塞率和波长分配代价的思想,在WRON网络的动态路由波长分配算法中考虑波长相关性.根据波长之间转换度变化,详细定义波长转换器的可转换波长之间的波长转换度,并定义了一个利用二进制数表示的空闲波长指示参数,利用该参数对链路上的空闲波长进行表示,用蚁群系统的蚁群波长信息素更新的计算公式来更新这个指示参数,简化波长分配的过程.通过仿真,证明本算法能够达到节约波长资源,降低网络的阻塞率和波长分配代价的目的.  相似文献   

20.
In a reconfigurable network, lightpath connections can be dynamically changed to reflect changes in traffic conditions. This paper characterizes the gain in traffic capacity that a reconfigurable wavelength division multiplexed (WDM) network offers over a fixed topology network where lightpath connections are fixed and cannot be changed. We define the gain as the ratio of the maximum offered loads that the two systems can support for a given blocking probability. We develop a system model to approximate the blocking probability for both the fixed and reconfigurable systems. This model is different from previous models developed to analyze the blocking probability in WDM networks in that it accounts for a port limitation at the nodes. We validate our model via simulation and find that it agrees strongly with simulation results. We study high-bandwidth calls, where each call requires an entire wavelength and find that reconfigurability offers a substantial performance improvement, particularly when the number of available wavelengths significantly exceeds the number of ports per node. In this case, in a ring with N nodes, the gain approaches a factor of N/2 over a fixed topology unidirectional ring, and N/4 over a fixed topology bidirectional ring. Hence, a reconfigurable unidirectional (bidirectional) ring can support N/2(N/4) times the load of a fixed topology unidirectional (bidirectional) ring. We also show that for a given traffic load, a configurable system requires far fewer ports per node than a fixed topology system. These port savings can potentially result in a significant reduction in overall system costs  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号