首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
An approach for accommodating the interfacial area changes in kinetic equations for heterogeneous reactions in the presence of spontaneous emulsification has been proposed. The kinetics were analyzed by incorporating time-averaged interfacial areas in the rate equations. The approach was found to be applicable for the experimental data and to satisfactorily describe the reaction kinetics. In the case of a high-temperature reaction between 2.35 g Fe-5 wt pct Al alloy metal droplets with CaO-SiO2-Al2O3 slag at 1650 °C, it was found that the kinetics follow a first-order relationship with respect to aluminum in the metal, and it was concluded that they were controlled by mass transport in the metal phase. The calculated metal mass-transfer coefficient k m was 1.7×10−6 m/s.  相似文献   

2.
In some metal/slag reactions involving spontaneous emulsification, there is a significant increase of interfacial area, which in turn affects the global rate. In previous work by the authors, the reaction between Fe-Al alloy droplets and CaO-SiO2-Al2O3 slag was investigated. Re-evaluation of the data has shown that at an initial reaction rate above 9 × 10−7 mol min−1 mm−2, the maximum change in interfacial area increases linearly with the initial rate and with the change of free energy due to chemical reaction. There were found to be two sources of interfacial area increase: (a) flattening of the original droplet, which was independent of initial rate; and (b) separation of smaller droplets, which was dependent on the initial rate.  相似文献   

3.
The reduction of chromium oxide from a basic steelmaking slag (45 wt pct CaO, 35 wt pct SiO2, 10 wt pct MgO, 10 wt pct A12O3) by silicon dissolved in liquid iron at steelmaking temperatures was studied to determine the rate-limiting steps. The reduction is described by the reactions: (Cr2O3) + Si = (SiO2) + (CrO) + Cr [1] and 2 (CrO) +Si = (SiO2) + 2 Cr [2] The experiments were carried out under an argon atmosphere in a vertical resistance-heated tube furnace. The slag and metal phases were held in zirconia crucibles. The course of the reactions was followed by periodically sampling the slag phase and analyzing for total chromium, divalent chromium, and iron. Results obtained by varying stirring rate, temperature, and composition defined the rate-limiting mechanism for each reaction. The rate of reduction of trivalent chromium (reaction [1] above) increases with moderate increases in stirring of the slag, and increases markedly with increases in temperature. The effects of changes in composition identified the rate-limiting step for Cr+3 reduction as diffusion of Cr+3 from the bulk slag to the slag-metal interface. The rate of reduction of divalent chromium does not vary with changes in stirring of the slag, but increases in temperature markedly increase the reaction rate. Thus, this reaction is limited by the rate of an interfacial chemical reaction. The reduction of divalent chromium is linearly dependent on concentration of divalent chromium, but is independent of silicon content of the metal phase.  相似文献   

4.
In the present work, the change of the interfacial tension at the slag-metal interface for sulfur transfer between molten iron, slag, and gas phases was monitored by X-ray sessile drop method in dynamic mode in the temperature range of 1830 to 1891 K. The experiments were carried out with pure iron samples immersed partly or fully in the slag phase. The slag consisted of 30 wt pct CaO, 50 wt pct Al2O3, and 20 wt pct SiO2 (alumina saturated at the experimental temperatures) with additions of FeO. Metal and slag samples contained in alumina crucibles were exposed to a CO-CO2-SO2-Ar gas mixture with defined oxygen and sulfur partial pressures, and the change of the shape of the metal drop was determined as a function of time. The equipment and the technique were calibrated by measurements of the surface tensions of the pure Cu, Ni, and Fe containing two different amounts of dissolved oxygen. A theoretical model was developed to determine the sulfur content of the metal as a function of time on the basis of sulfur diffusion in the slag and metal phases as well as surface tension-induced flow on the metal drop surface. Attempts were made to compute the interfacial tensions on the basis of force balance. This article is based on a presentation made in the “Geoffrey Belton Memorial Symposium,” held in January 2000, in Sydney, Australia, under the joint sponsorship of ISS and TMS.  相似文献   

5.
The reduction of CaO-SiO2-Al2O3-FeO slags containing less than 10 wt pct FeO by solid carbonaceous materials such as graphite, coke, and coal char was investigated at reaction temperatures of 1400 °C to 1450 °C. The carbon monoxide evolution rate from the system was measured using stationary and rotating carbon rods, stationary horizontal carbon surfaces, and pinned stationary spheres as the reductants. The measured reaction rate ranged from 3.25 × 10?7 mol cm?2 s?1 at 2.1 pct FeO under static conditions to 3.6 × 10?6 mol cm?2 s?1 at 9.5 pct FeO for a rotating rod experiment. Visualization of the experiment using X-ray fluoroscopy showed that gas evolution from the reduction reaction caused the slag to foam during the experiment and that a gas film formed between the carbon surface and the slag at all times during experimentation. The reaction rate increased with increased slag FeO contents under all experimental conditions; however, this variation was not linear with FeO content. The reaction rate also increased with the rotation speed of the carbon rod at a given FeO content. A small increase in the reaction rate, at a given FeO content, was found when horizontal coke surfaces and coke spheres were used as the reductant as compared to graphite and coal char. The results of these experiments do not fit the traditional mass transfer correlations due to the evolution of gas during the experiment. The experimental results are consistent, however, with the hypothesis that liquid phase mass transfer of iron oxide is a major factor in the rate of reduction of iron oxide from slags by carbonaceous materials. In a second article, the individual rates of the possible limiting steps will be compared and a mixed control model will be used to explain the measured reaction rates.  相似文献   

6.
The reduction of lead oxide in dilute solution in CaO-Al2O2-SiO3 slag by carbon dissolved in iron was investigated using a composite crucible as a container so as to exclude graphite from the system. The variables studied to elucidate the reaction mechanism were pressure inside the crucible, carbon content of the metal, lead oxide concentration in slag, and slag composition. The experimental results are best explained by postulating the existence of a gas film at the slag metal interface. It is suggested that the rate controlling step for the lead oxide reduction by carbon is a chemical reaction at the gas/slag interface. The rate constant for up to 3 wt pct PbO in the slag and 2.0 to 4.3 pct C in iron at 1400 °C as calculated from the present study is 4.6 x 10-4 mol/cm2/min/atm.  相似文献   

7.
The objective of this laboratory investigation was to measure the reduction kinetics of nickel smelting and converting slags using alternating current (AC) and direct current (DC). The two slags tested contained 34 and 51 pct total iron in the form of FeO and Fe3O4. Laboratory experiments were carried out between 1200 °C and 1450 °C, and the rate of reduction was measured based on the CO and CO2 contents in the off-gas from the furnace. Upon application of power to a pair of electrodes immersed in the molten slag, the reduction rate increased rapidly. This increase is explained by an increase in the electrode tip temperature enhancing the rate of the Boudouard reaction. The rate of reduction of the converter slag containing 29 pct Fe3O4 was 2 to 3 times faster than the smelting slag. With DC, the reduction rates at the anode and cathode were basically identical to each other, while for the smelting slag with only 8 pct Fe3O4, the anode and cathode reduction rates were quite different. With increasing current or power density, the temperatures of the electrodes increase above that of the bulk slag.  相似文献   

8.
《钢铁冶炼》2013,40(5):367-372
Abstract

The present paper reports results relating to the kinetics and mechanism of FeO reduction by graphite, the data being obtained from experimental investigations into the wettability of graphite by molten slag containing FeO. The rate of FeO reduction was determined by measuring the volume of CO gas formed as a result of the reduction of FeO in experiments conducted in the same sessile drop apparatus. The reduction reaction initiated by direct slag–graphite contact produces CO gas which spreads into the molten slag droplet causing foaming of the slag; further reduction of FeO proceeds mostly via indirect reduction. The rate of reduction was found to depend directly on the initial FeO content. An increase in temperature improves the rate of reaction, which has an activation energy of 112·18 kJ mol-1. These results indicate that transport of FeO (Fe2+, O2- ) in the liquid slag phase is probably the slowest step.  相似文献   

9.
The kinetics of dephosphorization of carbon-saturated iron by oxidizing slags were studied at 1330 °C. Nine slag compositions were investigated in the systems CaO-Fe2O3-SiO2-CaF2 and CaO-Fe2O3-SiO2-CaCl2. Increasing Fe2O3 up to 50 pct was found to increase the rate and extent of dephosphorization, whereas further increases were found to decrease the rate and extent of dephosphorization. This was explained in terms of two competing effects on the driving force, where increased levels of iron oxide increase the oxygen potential for dephosphorization, hence the driving force, but simultaneously dilute the basic components in the slag, lowering the driving force for dephosphorization. CaF2 and CaCl2 were found to decrease the rate and extent of dephosphorization at levels higher than 12 pct. The rate of dephosphorization was found to be first order with respect to phosphorous in the metal and was controlled by mass transport in the slag. The oxygen potential at the slag/metal interface was controlled by the FeO activity in the slag. When the kinetic results were analyzed to take account of different driving forces, Fe2O3, CaF2 and CaCl2 were all found to increase the mass transfer coefficient of phosphorous in the slag, and a quantitative relationship has been demonstrated between these mass transfer coefficients and the slag viscosity for each system studied.  相似文献   

10.
The electrochemical nature of the reaction between iron oxide in calcia-silica-alumina slag and carbon in liquid iron has been studied by measuring the kinetics of the slag-metal reaction. A base slag (48 pct CaO-40 pct SiO2-12 pct Al2O3) containing iron oxide (≤8 wt pct FeO t ) was reduced by an Fe-C metal bath (∼4 wt pct C) at 1400 °C. The reaction rate was calculated from measurements of the total inlet gas flow rate and the CO concentration in the outlet gas stream. The slag was “internally short circuited” by dipping an iron plate through the slag layer, and this resulted in an increase in the rate of CO evolution. An external circuit was produced by dipping a graphite rod (shielded from the slag) into the metal bath and a steel or molybdenum rod into the slag layer; the open-circuit voltage and short-circuit current were measured when iron oxide was added to the base slag layer. The reaction rate was enhanced by applying a voltage across the slag layer, and an electric arc cathode was employed in some of these “electrolysis” experiments.  相似文献   

11.
The reduction reaction of FeO in slag by carbon plays an important role in bath smelting reduction processes. In this study, the rate of this reaction was measured to understand the kinetic behavior of FeO reduction in slag by using the mass spectrometer technique. The present experimental results implied that the rate-determining step would change from the mass transfer of FeO at a low FeO content (<5 wt pct) to the chemical reaction at the gas/carbon interface at a high FeO content (>30 wt pct), while the total reduction rate would increase with an increasing FeO content in the slag. Based on the results of this study and comparisons with thermodynamical data for FeO in slag, the reduction rate of FeO can be expressed by the following equation:
The activation energy of the present reaction was measured to be 60.0 kcal/mol for 10 wt pct FeO. The large value of the activation energy suggested that the chemical reactions at the gas/carbon interface would be the rate-limiting step for FeO contents higher than 30 wt pct. In the meantime, the reduction mechanism would change from a chemical reaction at the carbon surface to a mixed controlling step of chemical reactions and mass transfer of FeO in slag for FeO contents lower than 5 wt pct.  相似文献   

12.
13.
Experiments have been carried out to determine the equilibria between FeO x -CaO-SiO2 slag and lead metal in iron crucibles at temperatures ranging from 1473 to 1573 K. It has been found that the highest lead solubilities are observed in the silica-saturated iron silicate slags, while the lowest solubilities are observed in the CaO-saturated calcium ferrite slags. The activity coefficient of PbO varies from 0.15 to 3, depending on the slag composition. Changes in temperature do not have a significant impact on the activity coefficient. The activity of FeO and pct Fe3+/pct Fe2+ ratios have been determined as a function of slag composition. These new experimental data have been incorporated into an optimized thermodynamic slag model using the computer package FACT.  相似文献   

14.
The rates of desulfurization of Fe-O-S melts by CaO crucibles and by CaO-saturated liquid iron oxide have been measured at 1600 ‡C. It was found that irons containing 1.62 wt pct and 0.64 wt pct sulfur and 0.070 wt pct oxygen are desulfurized by a reaction with the containing CaO crucible which does not involve the formation of a CaS product layer. The rate of desulfurization reaction is controlled by diffusion of sulfur in the iron melt, and a value of 6.7 ±1.7 × 10-5 cm2 per second was obtained for the diffusion coefficient of sulfur in liquid iron. Iron containing 0.088 wt pct sulfur and 0.070 wt pct oxygen is not desulfurized by solid CaO. The rate of desulfurization of liquid iron containing 0.088 wt pct sulfur and 0.070 wt pct oxygen by CaO-saturated liquid iron oxide is significantly greater than that calculated on the assumption of diffusion control in the metal phase, and evidence is presented in support of speculation that the reaction rate is enhanced by Marangoni turbulence at the slag-metal interface. The addition of 4 wt pct CaF2 to the CaO-saturated liquid iron oxide has no influence on the rate of desulfurization of the melt. A. Saelim formerly Lecturer, Faculty of Engineering, Prince of Songkla University, Thailand  相似文献   

15.
The concentrations of oxygen and sulfur in unsaturated and magnetite-saturated Cu-Fe mattes were measured as a function of oxygen and sulfur pressures and iron metal weight fraction of the matte (W Fe = wt Fe/(wt Fe + wt Cu)). The liquid matte samples were equilibrated with streams of gas of known pressures of S2 and O2 at 1468 K. Empirical correlation equations were developed to describe the experimental results. The correlation for oxygen in unsaturated matte is wt pct O = 2.50P O 2 0.200 P S 2 -0.142 (1 + 9.0W Fe 2.19, and in magnetite-saturated matte it is wt pct O = 0.14 + 2.39W Fe + 12.0W Fe 2 for 0.001 <P S 2 ≤ 0.01 atm and it is wt pct O = −3.06 + 2.39W Fe + 12.0W Fe 2 − 1.60 logP S 2 for 0.01 <P S 2 < 0.023 atm. A single complex equation ofP O 2,P S 2, andW Fe describes the sulfur concentrations in both unsaturated and magnetite-saturated mattes. An erratum to this article is available at .  相似文献   

16.
Measurements of the rates of reduction of iron oxide from molten CaO-SiO2-Al2O3-Fe x O slags by Ar-CO mixtures have been made using a thermogravimetric method. The apparent first-order rate constant, with respect to the partial pressure of CO, of the gas/slag interfacial reaction was deduced from the measured rates, where the effects of the mass transfer in the gas and slag phases were minimized. It was found that the apparent first-order rate constant decreased with the concentration of ‘FeO’ from 100 to 20 wt pct, whereas it remained essentially constant in the range from 5 to 20 wt pct ‘FeO’. At a given iron oxide concentration, the reduction-rate constant increased significantly with an increase in the CaO/SiO2 ratio. For fixed slag compositions, the reduction rate increased slightly with the oxidation state of the slags. When the rate constant is expressed in the form of k=k′(Fe3+/2+)α, the values of α range from 0.15 to 0.25. The effect of temperature in the range from 1673 to 1873 K on the reduction rate of iron oxide in a 40.4CaO-40.4SiO2-14.2Al2O3-5‘FeO’ (wt pct) slag was studied. The calculated activation energy, based on these results, is 165 kJ/mol.  相似文献   

17.
The activities of iron and copper and the solubilities of oxygen in copper-iron-sulfur-oxygen mattes have been determined by equilibrating mattes with CO−CO2−SO2 gas mixtures of fixed partial pressures of oxygen and sulfur and equilibrating a small mass of platinum with the melt. Iron and copper transferred from the matte to form a platinum-iron-copper alloy in which the activities of iron and copper are the same as in the matte. The activities of iron and copper in the matte were then determined from knowledge of the activities of iron and copper in the system platinum-iron-copper. Sulfides ofW Fe=0.1, 0.3, and 0.5 were studied, whereW Fe=wt pct Fe/(wt pct Fe+wt pct Cu), and sulfur pressures of 0.005, 0.0158, and 0.025 atm and oxygen pressures of 3.16×10−10, 7.94×10−10, 2.00×10−9, and 3.16×10−9 were used. The activity of copper, which varied in the range 0.06 to 0.165, decreases with increasingp O 2 at constantW Fe andp S 2 and decreases with increasingp S 2 at constantW Fe and constantp O 2. The activity of iron, which varied in the range 0.002 to 0.06, increases with increasingp O 2 at constantW Fe andp S 2 and decreases with increasingp S 2 at constantW Fe andp O 2. The activities of the components Cu2S, FeS, Cu2O, FeO, and Fe3O4 were calculated from the activities of iron and copper, the partial pressures of oxygen and sulfur, and the approapriate equilibrium constants. The variations of the activities of these components with matte grade, oxygen pressure, and sulfur pressure are presented and discussed. Within the range of experimental conditions studied, the solubility of oxygen in the melts is given by wt pct O=2.59pO2/0.225pS2/−0.18 (1+9.0W Fe)1.86  相似文献   

18.
Redox equilibria, activities of cobalt, iron and their oxides in calcium ferrite and calcium ironsilicate slags, were measured through metal-slag-gas equilibrium experiments under controlled oxygen potentials (10−7 to 3 × 10−7 atm) at 1573 K. Results on the redox equilibria show that addition of CoO to calcium ferrite slag increases the equilibrium Fe3+/Fe2+ ratio in these melts. Measured activities of CoO and FeO showed positive deviations from ideal behavior, while that of Fe2O3 showed negative deviation. Partial substitution of CaO by SiO2, by up to 4 wt pct SiO2 in the calcium ferrite based melts, resulted in increases in the activity coefficients of CoO and Fe2O3. Phase equilibria studies on the cobalt containing CaO-FeO-Fe2O3-SiO2 slags were also carried out using the drop-quench technique. Good agreement between the activity data and the liquidus temperature with respect to magnetite solid solution containing CoO was observed.  相似文献   

19.
The kinetics of silicothermic reduction of manganese oxide from MnO–SiO2–CaO–Al2O3 slags reacting with Fe-Si droplets were studied in the temperature range of 1823 K to 1923 K (1550 °C to 1650 °C). The effects of initial droplet mass, initial droplet silicon content, and initial slag manganese oxide content were studied. Data obtained for 15 pct silicon showed agreement with control by mass transport of MnO in the slag with a mass transfer coefficient (k s) of 4.0 × 10?5 m/s at 1873 K (1600 °C). However, when this rate-determining step was tested at different initial silicon contents, the agreement was lost, suggesting mixed control between silicon transport in the metal and manganese oxide transport in the slag. Increasing the temperature resulted in a decrease in the rate of reaction because of an increase in the favorability of SiO as a product. Significant gas generation was found during all experiments, as a result of silicon monoxide production. The ratio of silicon monoxide to silica formation was increased by factors favoring silicon transport over that of manganese, further supporting the conclusion that the reaction is under mixed control by transports of both silicon and manganese oxide.  相似文献   

20.
A sulfide capacity prediction model of CaO-SiO2-MgO-FeO-MnO-Al2O3 ladle furnace (LF) refining slags has been developed based on the ion and molecule coexistence theory (IMCT). The predicted sulfide capacity of the LF refining slags has better accuracy than the measured sulfide capacity of the slags at the middle and final stages during the LF refining process. Increasing slag binary basicity, optical basicity, and the Mannesmann index can lead to an increase of the predicted sulfide capacity for the LF refining slags as well as to an increase of the sulfur distribution ratio between the slags and molten steel at the middle and final stages during the LF refining process. The calculated equilibrium mole numbers, mass action concentrations of structural units or ion couples, rather than mass percentages of components, are recommended to represent the slag composition for correlating with the sulfide capacity of the slags. The developed sulfide capacity IMCT model can calculate not only the total sulfide capacity of the slags but also the respective sulfide capacity of free CaO, MgO, FeO, and MnO in the slags. The comprehensive contribution of the combined ion couples (Ca2+ + O2−) and (Mn2+ + O2−) on the desulfurization reactions accounts for 96.23 pct; meanwhile, the average contribution of the ion couple (Fe2+ + O2−) and (Mg2+ + O2−) only has a negligible contribution as 3.13 pct and 0.25 pct during the LF refining process, respectively. The oxygen activity of bulk molten steel in LF is controlled by the [Al]–[O] equilibrium, and the oxygen activity of molten steel at the slag–metal interface is controlled by the (FeO)–[O] equilibrium. The ratio of the oxygen activity of molten steel at the slag–metal interface to the oxygen activity of bulk molten steel will decrease from 37 to 5 at the initial stage, and further decrease from 28 to 4 at the middle stage, but will maintain at a reliable constant as 5 to 14 at the final stage during the LF refining process. The proposed high-oxygen potential layer of molten steel beneath the slag–metal interface can be quantitatively verified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号