首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Given a set of pointsV in the plane, the Euclidean bottleneck matching problem is to match each point with some other point such that the longest Euclidean distance between matched points, resulting from this matching, is minimized. To solve this problem, we definek-relative neighborhood graphs, (kRNG) which are derived from Toussaint's relative neighborhood graphs (RNG). Two points are calledk-relative neighbors if and only if there are less thank points ofV which are closer to both of the two points than the two points are to each other. AkRNG is an undirected graph (V,E r k ) whereE r k is the set of pairs of points ofV which arek-relative neighbors. We prove that there exists an optimal solution of the Euclidean bottleneck matching problem which is a subset ofE r 17 . We also prove that ¦E r k ¦ < 18kn wheren is the number of points in setV. Our algorithm would construct a 17RNG first. This takesO(n 2) time. We then use Gabow and Tarjan's bottleneck maximum cardinality matching algorithm for general graphs whose time-complexity isO((n logn)0.5 m), wherem is the number of edges in the graph, to solve the bottleneck maximum cardinality matching problem in the 17RNG. This takesO(n 1.5 log0.5 n) time. The total time-complexity of our algorithm for the Euclidean bottleneck matching problem isO(n 2 +n 1.5 log0.5 n).  相似文献   

2.
Xin He 《Algorithmica》1990,5(1):545-559
We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.  相似文献   

3.
He  Xin 《Algorithmica》1990,5(1-4):545-559

We present an efficient algorithm for 4-coloring perfect planar graphs. The best previously known algorithm for this problem takesO(n 3/2) sequential time, orO(log4 n) parallel time withO(n3) processors. The sequential implementation of our algorithm takesO(n logn) time. The parallel implementation of our algorithm takesO(log3 n) time withO(n) processors on a PRAM.

  相似文献   

4.
S. Sunder  Xin He 《Algorithmica》1996,16(3):243-262
We present a parallel algorithm for solving the minimum weighted completion time scheduling problem for transitive series parallel graphs. The algorithm takesO(log2 n) time withO(n 3) processors on a CREW PRAM, wheren is the number of vertices of the input graph. This is the first NC algorithm for solving the problem.Research supported in part by NSF Grants CCR-9011214 and CCR-9205982.  相似文献   

5.
We present an algorithm for computingL 1 shortest paths among polygonal obstacles in the plane. Our algorithm employs the “continuous Dijkstra” technique of propagating a “wavefront” and runs in timeO(E logn) and spaceO(E), wheren is the number of vertices of the obstacles andE is the number of “events.” By using bounds on the density of certain sparse binary matrices, we show thatE =O(n logn), implying that our algorithm is nearly optimal. We conjecture thatE =O(n), which would imply our algorithm to be optimal. Previous bounds for our problem were quadratic in time and space. Our algorithm generalizes to the case of fixed orientation metrics, yielding anO(n??1/2 log2 n) time andO(n??1/2) space approximation algorithm for finding Euclidean shortest paths among obstacles. The algorithm further generalizes to the case of many sources, allowing us to compute anL 1 Voronoi diagram for source points that lie among a collection of polygonal obstacles.  相似文献   

6.
Xin He 《Algorithmica》1995,13(6):553-572
We present an efficient parallel algorithm for constructing rectangular duals of plane triangular graphs. This problem finds applications in VLSI design and floor-planning problems. No NC algorithm for solving this problem was previously known. The algorithm takesO(log2 n) time withO(n) processors on a CRCW PRAM, wheren is the number of vertices of the graph.This research was supported by NSF Grants CCR-9011214 and CCR-9205982.  相似文献   

7.
We study the problem of finding a minimum weight complete matching in the complete graph on a set V ofn points ink-dimensional space. The points are the vertices of the graph and the weight of an edge between any two points is the distance between the points under someL q,-metric. We give anO((2c q )1.5k ??1.5k (α(n, n))0.5 n 1.5(logn)2.5) algorithm for finding an almost minimum weight complete matching in such a graph, wherec q =6k 1/q for theL q -metric, α is the inverse Ackermann function, and ? ≤ 1. The weight of the complete matching obtained by our algorithm is guaranteed to be at most (1 + ?) times the weight of a minimum weight complete matching.  相似文献   

8.
Parallel algorithms for the problems of selection and searching on sorted matrices are formulated. The selection algorithm takesO(lognlog lognlog*n) time withO(n/lognlog*n) processors on an EREW PRAM. This algorithm can be generalized to solve the selection problem on a set of sorted matrices. The searching algorithm takesO(log logn) time withO(n/log logn) processors on a Common CRCW PRAM, which is optimal. We show that no algorithm using at mostnlogcnprocessors,c≥ 1, can solve the matrix search problem in time faster than Ω(log logn) and that Ω(logn) steps are needed to solve this problem on any model that does not allow concurrent writes.  相似文献   

9.
An obnoxious facility is to be located inside a polygonal region of the plane, maximizing the sum of the k smallest weighted Euclidean distances to n given points, each protected by some polygonal forbidden region. For the unweighted case and k fixed an O(n2logn) time algorithm is presented. For the weighted case a thorough study of the relevant structure of the multiplicatively weighted order-k-Voronoi diagram leads to the design of an O(kn3+n3logn) time algorithm for finding an optimal solution to the anti-t-centrum problem for every t=1,…,k, simultaneously.  相似文献   

10.
Givenn points in the Euclidean plane, we consider the problem of finding the minimum tree spanning anyk points. The problem isNP-hard and we give anO(logk)-approximation algorithm.  相似文献   

11.
Sun Wu  Udi Manber 《Algorithmica》1992,8(1):89-101
The notion of matching in graphs is generalized in this paper to a set of paths rather than to a set of edges. The generalized problem, which we call thepath-matching problem, is to pair the vertices of an undirected weighted graph such that the paths connecting each pair are subject to certain objectives and/or constraints. This paper concentrates on the case where the paths are required to be edge-disjoint and the objective is to minimize the maximal cost of a path in the matching (i.e., the bottleneck version). Other variations of the problem are also mentioned. Two algorithms are presented to find the best matching under the constraints listed above for trees. Their worst-case running times areO(n logd logw), whered is the maximal degree of a vertex,w is the maximal cost of an edge, andn is the size of the tree, andO(n 2), respectively. The problem is shown to be NP-complete for general graphs. Applications of these problems are also discussed.Udi Manber was supported in part by an NSF Presidential Young Investigator Award (Grant DCR-8451397), with matching funds from AT&T.  相似文献   

12.
We study the partial vertex cover problem. Given a graph G=(V,E), a weight function w:VR +, and an integer s, our goal is to cover all but s edges, by picking a set of vertices with minimum weight. The problem is clearly NP-hard as it generalizes the well-known vertex cover problem. We provide a primal-dual 2-approximation algorithm which runs in O(nlog n+m) time. This represents an improvement in running time from the previously known fastest algorithm. Our technique can also be used to get a 2-approximation for a more general version of the problem. In the partial capacitated vertex cover problem each vertex u comes with a capacity k u . A solution consists of a function x:V→ℕ0 and an orientation of all but s edges, such that the number of edges oriented toward vertex u is at most x u k u . Our objective is to find a cover that minimizes ∑ vV x v w v . This is the first 2-approximation for the problem and also runs in O(nlog n+m) time. Research supported by NSF Awards CCR 0113192 and CCF 0430650, and the University of Maryland Dean’s Dissertation Fellowship.  相似文献   

13.
We study the problem of finding a minimum weight complete matching in the complete graph on a set V ofn points ink-dimensional space. The points are the vertices of the graph and the weight of an edge between any two points is the distance between the points under someL q,-metric. We give anO((2c q )1.5k –1.5k ((n, n))0.5 n 1.5(logn)2.5) algorithm for finding an almost minimum weight complete matching in such a graph, wherec q =6k 1/q for theL q -metric, is the inverse Ackermann function, and 1. The weight of the complete matching obtained by our algorithm is guaranteed to be at most (1 + ) times the weight of a minimum weight complete matching.This research was supported by a fellowship from the Shell Foundation.  相似文献   

14.
An algorithm for finding a minimal edge coloring of a bipartite multigraph is presented. The algorithm usesO(V 1/2 ElogV + V) time andO(E + V) space. It is based on a divide-and-conquer strategy, using euler partitions to divide the graph. A modification of the algorithm for matching is described. This algorithm finds a maximum matching of a regular bipartite graph with all degrees 2n, inO(E + V) time andO(E + V) space.This work was partially supported by the National Science Foundation under Grant GJ36461.  相似文献   

15.
We present an algorithm for computingL 1 shortest paths among polygonal obstacles in the plane. Our algorithm employs the continuous Dijkstra technique of propagating a wavefront and runs in timeO(E logn) and spaceO(E), wheren is the number of vertices of the obstacles andE is the number of events. By using bounds on the density of certain sparse binary matrices, we show thatE =O(n logn), implying that our algorithm is nearly optimal. We conjecture thatE =O(n), which would imply our algorithm to be optimal. Previous bounds for our problem were quadratic in time and space.Our algorithm generalizes to the case of fixed orientation metrics, yielding anO(n–1/2 log2 n) time andO(n–1/2) space approximation algorithm for finding Euclidean shortest paths among obstacles. The algorithm further generalizes to the case of many sources, allowing us to compute anL 1 Voronoi diagram for source points that lie among a collection of polygonal obstacles.Partially supported by a grant from Hughes Research Laboratories, Malibu, California and by NSF Grant ECSE-8857642. Much of this work was done while the author was a Ph.D. student at Stanford University, under the support of a Howard Hughes Doctoral Fellowship, and an employee of Hughes Research Laboratories.  相似文献   

16.
Shortest paths in weighted directed graphs are considered within the context of compact routing tables. Strategies are given for organizing compact routing tables so that extracting a requested shortest path will takeo(k logn) time, wherek is the number of edges in the path andn is the number of vertices in the graph. The first strategy takesO (k+logn) time to extract a requested shortest path. A second strategy takes (k) time on average, assuming alln(n–1) shortest paths are equally likely to be requested. Both strategies introduce techniques for storing collections of disjoint intervals over the integers from 1 ton, so that identifying the interval within which a given integer falls can be performed quickly.This research was supported in part by the National Science Foundation under Grants CCR-9001241 and CCR-9322501 and by the Office of Naval Research under Contract N00014-86-K-0689.  相似文献   

17.
LetQ = {q1, q2,..., qn} be a set ofn points on the plane. The largest empty circle (LEG) problem consists in finding the largest circleC with center in the convex hull ofQ such that no pointq i εQ lies in the interior ofC. Shamos recently outlined anO(n logn) algorithm for solving this problem.(9) In this paper it is shown that this algorithm does not always work correctly. A different approach is proposed here and shown to also result in anO(n logn) algorithm. The new approach has the advantage that it can also solve more general problems. In particular, it is shown that if the center ofC is constrained to lie in an arbitrary convexn-gon, an0(n logn) algorithm can still be obtained. Finally, an0(n logn +k logn) algorithm is given for solving this problem when the center ofC is constrained to lie in an arbitrary simplen-gonP. wherek denotes the number of intersections occurring between edges ofP and edges of the Voronoi diagram ofQ andk ?O(n 2).  相似文献   

18.
By restricting weight functions to satisfy the quadrangle inequality or the inverse quadrangle inequality, significant progress has been made in developing efficient sequential algorithms for the least-weight subsequence problem [10], [9], [12], [16]. However, not much is known on the improvement of the naive parallel algorithm for the problem, which is fast but demands too many processors (i.e., it takesO(log2 n) time on a CREW PRAM with n3/logn processors). In this paper we show that if the weight function satisfies the inverse quadrangle inequality, the problem can be solved on a CREW PRAM in O(log2 n log logn) time withn/log logn processors, or in O(log2 n) time withn logn processors. Notice that the processor-time complexity of our algorithm is much closer to the almost linear-time complexity of the best-known sequential algorithm [12].  相似文献   

19.
Given two finite sets of points in a plane, the polygon separation problem is to construct a separating convexk-gon with smallestk. In this paper, we present a parallel algorithm for the polygon separation problem. The algorithm runs inO(logn) time on a CREW PRAM withn processors, wheren is the number of points in the two given sets. The algorithm is cost-optimal, since (n logn) is a lower-bound for the time needed by any sequential algorithm. We apply this algorithm to the problem of finding a convex polygon, with the minimal number of edges, for which a given convex region is its digital image. The algorithm in this paper constructs one such polygon with possibly two more edges than the minimal one.The research is sponsored by NSERC Operating Grant OGPIN 007.  相似文献   

20.
This paper studies vehicle routing problems on asymmetric metrics. Our starting point is the directed k-TSP problem: given an asymmetric metric (V,d), a root rV and a target k≤|V|, compute the minimum length tour that contains r and at least k other vertices. We present a polynomial time O(\fraclog2 nloglogn·logk)O(\frac{\log^{2} n}{\log\log n}\cdot\log k)-approximation algorithm for this problem. We use this algorithm for directed k-TSP to obtain an O(\fraclog2 nloglogn)O(\frac{\log^{2} n}{\log\log n})-approximation algorithm for the directed orienteering problem. This answers positively, the question of poly-logarithmic approximability of directed orienteering, an open problem from Blum et al. (SIAM J. Comput. 37(2):653–670, 2007). The previously best known results were quasi-polynomial time algorithms with approximation guarantees of O(log 2 k) for directed k-TSP, and O(log n) for directed orienteering (Chekuri and Pal in IEEE Symposium on Foundations in Computer Science, pp. 245–253, 2005). Using the algorithm for directed orienteering within the framework of Blum et al. (SIAM J. Comput. 37(2):653–670, 2007) and Bansal et al. (ACM Symposium on Theory of Computing, pp. 166–174, 2004), we also obtain poly-logarithmic approximation algorithms for the directed versions of discounted-reward TSP and vehicle routing problem with time-windows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号