首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对某三段式客车底盘车架的强度校核,利用CATIA建立其三维模型,导入ANSYS Workbench中建立底盘车架的有限元模型,并对底盘车架进行了计算模态分析以及弯曲、扭转、紧急制动、急转弯4种工况下的应力和应变分析。分析结果表明:前6阶振动模态的固有频率均大于路面与发动机的怠速激励频率;底盘车架的最大应力值为351.22 MPa,小于许用屈服应力355 MPa。由分析结果可判断该底盘车架设计合理,进而为底盘车架结构优化和轻量化设计提供参考。  相似文献   

2.
资源短缺、环境恶化使新能源汽车成为人们关注焦点。纯电动城市客车车架的轻量化可以进一步减轻汽车重量,节约资源,增加车辆续驶里程,从而轻量化成为各大整车厂、高校以及研究所的研究热点。针对某12m纯电动城市客车的底盘车架,利用Solid Works软件进行三维建模,在SCDM软件中对模型进行抽取中面、简化模型等前处理工作,并利用有限元前处理软件Hypermesh以及Optistruct模块对底盘车架进行静力学分析以及参数优化。静力学分析结果显示,12m纯电动城市客车的底盘结构符合材料的静强度要求。基于静强度分析结果,对底盘结构进行参数优化的轻量化设计,结果表明,在保证客车各方面性能要求前提下,客车底盘结构可以减重9.55%。  相似文献   

3.
基于动态特性的车架再设计   总被引:1,自引:1,他引:0  
应用三维CAD软件建立车架的模型,通过接口输入动力分析软件,定义模型的材料、实常数以及约束情况等,对模型进行离散化,建立有限元模型,求解得到模型的前5阶模态参数.与利用试验模态法测试得到的前5阶模态参数吻合程度较好,两种方法均得到与发动机怠速时的激励频率25Hz很接近的-阶固有频率24.7Hz且振型为底板绕Y弯+墙板绕Z弯.为了避开此激励频率,利用修改后的有限元模型对车架进行结构修改,使得车架-阶固有频率与发动机怠速时的激励频率25Hz有了较大的偏移.  相似文献   

4.
以氢燃料电池客车车架为研究对象,首先应用HyperWorks建立氢燃料电池客车车架的有限元模型,然后对车架进行无约束模态分析,得到车架前十阶固有频率及振型,并对车架进行频率响应分析,得到车架高应力区域的动力响应与振动频率的关系曲线。最后,根据车架动态特性分析结果,对车架进行参数化优化设计。结果表明:经过优化后的车架减重4.09%,在扭转工况下的最大应力为169MPa,最大变形为6.37mm,车架强度与刚度得到提高。车架的固有频率可以避开主要外部激励频率,从而避免共振现象的发生。车架频响分析动力响应峰值整体减小,尤其当频率在68~71Hz时,接近车架的第十九阶固有频率,车架位移响应曲线几乎失去共振峰,车架抗振性能增强。  相似文献   

5.
某重型载重车辆振动分析和控制   总被引:6,自引:1,他引:5  
为了有效消除某重型载重车的驾驶室水平晃动,对车架和驾驶室悬置进行了综合有限元模态分析, 分析了载重车驾驶室和车架的前6阶固有频率及模态振型特征.结合试验测试的路面激振信号分析,对车架有限元模型进行了动力优化.实际结果表明,驾驶室侧向弯曲模态固有频率与路面随机激励频率错开3~4 Hz后,减小了驾驶室的横向振动,改善了该型载重车的平顺性.  相似文献   

6.
为分析联合收割机底盘机架的振动特性,使用UG NX12.0建立机架的三维模型,使用NX Nastran进行理论模态分析,计算前12阶振型的固有频率和云图,得出机架最大变形部位。通过对底盘机架进行模态试验,验证理论分析的准确性。计算外部激励频率范围,对比分析机架固有频率与主要外部激励频率,对机架进行结构优化,有效避免机架共振。研究结果表明:在机架质量增加7.9%的前提下,机架的第9阶和第10阶固有频率分别降低到81.439 Hz和84.803 Hz,有效避开了发动机工作激振频率86.667 Hz。对优化的机架进行静力学分析,其结构强度满足设计要求。  相似文献   

7.
基于CREO建立车架的三维结构模型,利用ANSYSWorkbench的Modal模块对车架进行模态分析。分析结果表明,车架振动以弯曲振动为主,振动区域主要集中在车架前部。车架固有频率都大于发动机怠速激励频率和路面激励频率,但是第一阶模态频率接近发动机怠速激励频率,可能引发共振。为了改善车架的模态性能,对车架进行改进,结合模态分析结果,可知改进后的车架模态性能得到改善。  相似文献   

8.
铰接式车辆车体结构复杂,需要对车体的固有特性进行分析,防止在运行中不同激励作用下出现共振现象.针对整车在正常行驶工况下的受力情况进行分析,获取车体结构振动基本方程;基于有限单元法建立车架有限元分析模型,分别获得前车体、后车体的前八阶固有频率和振型;分析路面激励和发动机激励对车体动态特性的影响,对车体的动态特性进行评价;基于车体激励试验台,分析路面激励、发动机激励等对车体振动的影响,以检验设计的可靠性.结果 可知:前车体固有振型主要是1个或几个部分振动为主的局部振动;前车体的前8阶弹性模态频率分布在(30~66)Hz范围内;后车体的前8阶弹性模态频率分布在(14~51)Hz范围内;前车体的一阶频率为30.85Hz,后车体的一阶频率为14.15Hz,高于路面的激励频率范围;前车体的(1~4)阶固有频率低于发动机怠速时的频率,(5~8)阶高于发动机的怠速时的频率(40Hz),不会引起共振;质心位置振动变化在三种作用形式下均未出现明显的激振情况.在激励作用下,振动幅度较输入激励略低,主要由于车辆减震器的作用,吸收了部分激励.表明设计是合理,分析过程可以作为此类研究的参考.  相似文献   

9.
针对某客车在高速下车身地板中后部振动较大、导致车厢内部NVH性能变差的问题,利用有限元软件建立了该车身地板的有限元模型。并通过试验测试分析技术和有限元模态分析法找出了车厢内地板振动的原因,其原因是客车车身地板后部在(45~60Hz)内存在两个局部模态,此两个模态频率落在了传动轴的1.28阶激励和发动机的2阶工作激励频率范围内,引发了地板的共振。先对车身地板的有限元模型中的横梁进行了灵敏度分析,然后根据分析结果进行了地板横梁结构及布置的优化,最后对优化结果进行了试验验证。试验结果表明优化后车身地板的振动明显减弱,表明了优化方案的有效性,这对解决类似的汽车NVH问题具有指导和参考价值。  相似文献   

10.
以普速铁路路侧落地安装直立式混凝土声屏障为研究对象,利用原位试验方法研究了列车运行下屏障板水平及竖向加速度时程和频谱特征,结合悬臂板理论模态分析了屏障板相对其基础的振动放大效应及机理。结果表明,钢轨-轨枕-道床-声屏障基础振动递减,屏障板较其基础加速度平均放大2倍,振级平均增大6 dB,道床和基础竖向振动卓越频率为63.5 Hz,水平向放大显著频段为6~8 Hz和40~50 Hz,竖向放大显著频率为63.5 Hz和160 Hz。理论模态分析显示,屏障板水平向前2阶自振频率为7 Hz和46 Hz,竖向1阶自振频率为170 Hz,说明水平放大效应与其前2阶自振频率相关,竖向放大效应与其1阶自振频率和基础激励频率相关。将屏障板振动响应估算简化为地基土-声屏障动力相互作用耦合振动模型,以考虑其受地基激励强迫振动和自由振动双重影响是合理可行的。  相似文献   

11.
针对汽车在行驶过程中因外部载荷激励而产生的振动问题,以某新能源客车车架为研究对象,对车架结构进行有限元模态分析,对车架薄弱部位进行尺寸优化设计。对优化后的新能源客车车架进行刚度和强度校核,确保优化后车架静力学特性满足设计要求,并使二阶固有频率基本避开发动机怠速激励频率。所做研究为汽车车架结构的优化设计提供了参考。  相似文献   

12.
为了降低车架在危险工况的变形,提高车架材料的效能和车架的动态刚度,以XG958轮式装载机前车架为研究对象,运用有限元软件ANSYS对前车架进行模态分析。基于有限元和静动态理论,运用ANSYS软件建立前车架有限元模型,并对前车架进行形状结构的改进。改进后前车架第一阶模态频率降低了14.937Hz,最大位移减少0.02mm;第二阶模态频率降低了2.308Hz,最大位移减少了0.222mm;第三阶模态频率降低了30.52Hz,最大位移减少了0.065mm。整体上提高了前车架的动刚度。  相似文献   

13.
针对某型号载货汽车在特定路面上行驶时存在的平顺性不理想问题,对载货汽车的驾驶室悬置、底盘悬架刚度和阻尼参数进行匹配优化,但优化后的载货汽车在特定路面上行驶时的平顺性问题仍没有得到明显改善;通过进一步分析发现,很可能是车架结构模态频率与特定路面的激励频率接近而导致载货汽车平顺性不理想。建立了载货汽车车架的柔性体模型,在此基础上,对车架进行模态分析,得到车架结构模态振型和模态频率;通过分析发现,很可能是车架的三阶模态频率导致驾驶室平顺性不理想。提出了通过改变车架模态频率来解决该型号载货汽车平顺性问题解决方法,并对提出的方法进行应用验证,有效改善该型号载货汽车的平顺性。  相似文献   

14.
传统新能源客车车架的设计过于保守,为减轻车架结构自重,减少制造成本,提出一种基于近似模型的城市客车车架轻量化设计方法。以某城市客车车架为研究对象,构建有限元模型,利用ANSYS有限元软件对车架最危险的扭转工况进行有限元分析。根据车架有限元分析结果,利用Isight软件构建车架的Kriging近似模型,对车架的主要承载梁进行尺寸优化设计。优化结果表明,在保证汽车各方面的性能要求下,优化后的车架总质量减轻了14.2%,强度有所提高。  相似文献   

15.
为了解决某SUV在高速时产生的振动与噪声问题,基于前副车架有限元分析模型和自由模态计算对其进行振动特性分析,获取其低阶模态频率及其阵型,分析结果表明其第1阶扭转频率处于发动机激励频率范围之内,将引起前副车架产生共振,从而产生剧烈振动和噪声。基于霍克-吉维斯直接搜索法对前副车架的料厚进行优化设计,得到了各个零部件最优的厚度值,分析结果表明优化之后其前4阶模态频率均有所提高,并且均处于发动机的激励频率范围之外,能够避免发生共振,满足模态设计要求。对前副车架的优化方案进行模态试验,试验结果表明其模态频率及其阵型的测试值与仿真值基本一致。整车道路试验结果表明优化之后前副车架的振动明显减少,最终成功解决了该故障问题。  相似文献   

16.
运用有限元分析软件ANSYS对某重型货车车架建立了参数化有限元分析模型,对处于自由状态下的车架进行模态分析,计算出车架前10阶固有频率和固有振型,将模态分析结果与汽车受到的激励频率作对比,分析了车架在外部激励作用下可能发生共振的情况,利用ANSYS进行以提高第5阶固有频率为目标的优化设计,使车架具有更好的动态特性。  相似文献   

17.
以某轿车副车架为研究对象,在CATIA、Hyper Works等软件中建立其有限元模型和多体动力学模型。对其结构进行强度分析和自由模态分析。分析结果表明,副车架强度符合使用要求,但该副车架的一阶模态频率与发动机激振频率较为接近从而可能会产生共振现象。针对该问题,采用变密度拓扑优化方法,建立以平均频率法定义的目标函数,以体积分数和应力为约束的拓扑优化。优化结果表明,副车架的模态计算值与试验值误差非常小,其一阶模态频率提高17.3Hz,并且给出副车架材料最优分配图,优化后一阶模态频率可避开发动机激励频率频带,验证副车架结构有效性。  相似文献   

18.
为了改善汽车传动轴的工作状态,避免其在工作过程中因激励而产生共振,本文利用三维软件Pro/E建立模型,导入有限元分析软件ANSYS中,对传动轴模型进行了有限元模态分析,获取了传动轴的前6阶振型和频率。寻找传动轴模型产生振动的频率范围,并提出了改进。此方法为传动轴的优化改进提供理论依据。  相似文献   

19.
针对一款城市专用校车底盘车架结构一阶固有频率偏低的问题,研究了其拓扑结构与静动态特性之间的关系,提出了基于静动态特性的校车底盘车架结构多目标拓扑优化设计方法,即以多工况下的底盘车架结构静态刚度和一阶固有频率最大为目标函数,以拓扑区域体积比为约束函数,建立其结构拓扑优化模型,利用Hyper Works的Optistruct软件对底盘车架结构进行多目标拓扑优化设计,结果表明,优化设计的底盘车架结构在静态刚度保持不变的前提下,其动态一阶固有频率提高了34.6%,较好地解决了校车底盘车架动态特性较差的问题。  相似文献   

20.
利用HyperWorks软件建立了客车骨架结构有限元模型和客车车内声腔声学有限元模型,在Virtual Lab中建立了声固耦合模型,并进行模态分析。采集了客车怠速工况下发动机悬置被动端振动加速度以及车内前中后排乘客处声压值;将测量的激励信号施加于声固耦合模型进行频率响应分析,计算10~200 Hz范围内的车内声压响应,并与试验测试得到的声压值进行对比分析。分析表明,仿真响应频谱与试验响应频谱的峰值频率对应较好,虽然仿真值小于试验值,但是利用此模型还是能够较准确得预测车内振动噪声响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号