首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Silk sericin (SS)/silk fibroin (SF) blend nanofibers have been produced by electrospinning in a binary SS/SF trifluoroacetic acid (TFA) solution system, which was prepared by mixing 20 wt.% SS TFA solution and 10 wt.% SF TFA solution to give different compositions. The diameters of the SS/SF nanofibers ranged from 33 to 837 nm, and they showed a round cross section. The surface of the SS/SF nanofibers was smooth, and the fibers possessed a bead-free structure. The average diameters of the SS/SF (75/25, 50/50, and 25/75) blend nanofibers were much thicker than that of SS and SF nanofibers. The SS/SF (100/0, 75/25, and 50/50) blend nanofibers were easily dissolved in water, while the SS/SF (25/75 and 0/100) blend nanofibers could not be completely dissolved in water. The SS/SF blend nanofibers could not be completely dissolved in methanol. The SS/SF blend nanofibers were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry, and differential thermal analysis. FTIR showed that the SS/SF blend nanofibers possessed a random coil conformation and ß-sheet structure.  相似文献   

2.
The secondary structure of silk fibroin (SF) and the compatibility of the two components were associated with the carboxymethyl chitosan (CMCS) content in SF/CMCS blend films. A rather complete conformation transition of SF from random coil to β-sheet occurred after adding 5% CMCS into the SF film, and the blend film exhibited a high crystallinity and a good compatibility. The conformation of SF changed from β-sheet to α-helix when blending 10% CMCS. When the CMCS content was up to 15%, the conformation of SF in blend films showed a transformation from β-sheet to a random coil and their crystallinities decreased evidently; accordingly, there was a two-phase separation structure for the blend films containing 15% CMCS or more. However, the intermolecular interaction between the two polymers still existed in blend film with 15% CMCS or more. The blend films with 5–10% CMCS content showed the lower moisture absorption, swelling capacity, and solubility in water. These properties of blend films increased when adding CMCS more than 15%.  相似文献   

3.
Won Ho Park  Lim Jeong  Sam Hudson 《Polymer》2004,45(21):7151-7157
The electrospinning of silk fibroin(SF)/chitosan(CS) blends with different composition ratios was performed with formic acid as a spinning solvent. The SF/CS blends containing up to the CS content of 30% could be electrospun into the continuous fibrous structure, although pure CS was not able to be electrospun into the fibrous structure. As-spun SF/CS blend nanofibers showed smaller diameter and narrower diameter distribution than pure SF nanofibers, and the diameter gradually decreased from 450 to 130 nm with the addition of CS in blends. However, at the blend compositions with above 40 wt% chitosan, the continuous SF nanofibers containing CS beads were produced. We also investigated the influence of the methanol treatment on the secondary structure of as-spun SF or SF/CS blend nanofibers by means of ATR-IR and solid-state CP-MAS 13C-NMR. Comparing with the pure SF nanofibers, the conformational change of the as-spun SF/CS blend nanofibers into β-sheet was faster because the CS with rigid backbone synergistically might promote the conformational transition of SF by an intermolecular interaction.  相似文献   

4.
利用丝素(SF)与羧甲基壳聚糖(CMCS)共混制取不同比例的SF/CMCS共混膜。研究了CMCS诱导的丝素构象转变行为,测试了共混膜的吸湿性、透湿性和保水性。当CMCS的质量分数为5%时,共混膜中丝素的构象以β-折叠为主;当CMCS的质量分数为10%时,共混膜中丝素的构象由β-折叠向α-螺旋发生转变;当CMCS的质量分数达到15%时,共混膜中丝素的构象向无规卷曲发生转变。当CMCS质量分数小于15%时,共混膜中SF与CMCS具有良好的相容性,溶胀度较小,吸湿性随CMCS含量的增加而迅速降低。  相似文献   

5.
In this study, a novel shear‐induced silk fibroin (SF) hydrogel with three‐dimensional (3D) anisotropic and oriented gel skeleton/network morphology is presented. Amphipathic anionic and nontoxic sodium surfactin is blended with the SF to decrease its gelation time during the mechanical shearing process. The fibroin/surfactin blended solutions undergo a facial shearing process to accomplish a sol–gel transition within 1 hour. The dynamic sol–gel transition kinetic analysis, gel skeleton/network morphology, and mechanical property measurements are determined in order to visualize the fibroin/surfactin sol–gel transition during the shearing process and its resulting hydrogel. The results demonstrate that there is significant β‐sheet assembly from random coil conformations in the fibroin/surfactin blended system during the facile shearing process. The SF β‐sheets further transform into a fibrous large‐scale aggregation with orientational and parallel arrangements to the shearing direction. The shear‐induced fibroin/surfactin hydrogel exhibits notable anisotropic and oriented 3D skeleton/network morphology and a significant mechanical compressive strength in proportion to the shearing stress, compared with the control fibroin/surfactin hydrogel undergoing no shearing process. Due to its oriented gel skeleton/network structure and significantly enhanced mechanical properties, the shear‐induced fibroin/surfactin gel may be suitable as a biomaterial in 3D oriented tissue regeneration, including for nerves, the cultivation of bone cells, and the repair of defects in muscle and ligament tissues. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45050.  相似文献   

6.
A novel physical blend method was developed to accelerate the self‐assembly process of silk fibroin (SF) solution into porous and nanofibrous hydrogel by temperature‐sensitive copolymer. Silk‐based hydrogel was firstly achieved through blending SF solution with copolymer aqueous solution and then removed the copolymer from blend solution by heat treatment (50°C) after 24 h hydrogelation. Copolymer molecules would interact with SF molecules resulting in reduction of copolymer micelles, which further affect the hydrogelation of SF solutions. Copolymers could be separated from blend solution by heat treatment under an acceptable temperature (50°C), especially the copolymer2. Fourier transform infrared (FTIR) and X‐ray diffraction showed the blending of copolymer significantly accelerated the self‐assembly of SF into physically crosslinked β‐sheet crystals at room temperature which led to the sol‐gel transition. Results from DTA and X‐ray diffraction showed that the effect of copolymer on crystalline structure of SF in silk‐based hydrogel was very weak. SF molecules transformed from distributed globular nanoparticles to nanofilaments clustered during hydrogelation, resulting in the porous and nanofibrous structure of silk‐based hydrogel. Furthermore, silk‐based hydrogel was prepared in aqueous solution avoiding organic solvents and harsh processing conditions, suggesting that this silk‐based hydrogel could be a potential candidate scaffold for biomedical applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
The Bombyx mori silk fibroin/Tussah silk fibroin (SF/TSF) nanofibers with diameters between 300 and 3500 nm were prepared by electrospinning with the solvent HFIP. The average diameters of SF/TSF blend fibers increased from 404 to 1977 nm, with the increase of SF content in blend solutions, and the relationship between the average diameters of SF/TSF and SF content was proved to be linear correlation. Results from FTIR, TG-DTA and X-ray diffraction showed that the electrospun fibers were mainly β-sheet structure and, heterogeneous micro-structures. In particular, the presence of two different endothermic peaks at 300 and 360 °C in the TG-DTA curves may be ascribed to the thermal decomposition of SF and TSF. These results suggested that SF and TSF were still immiscible even dissolved in hexafluoroisopropanol (HFIP) after electrospinning and ethanol treatment. Moreover, the thermal decomposition temperature and enthalpy were improved with the blend of SF and TSF, else the SF/TSF nanofibers' moisture absorption was higher than the pure SF or TSF nanofibers. To study the cytocompatibility and cell behavior on the SF/TSF nanofibers, MSCs, VECs, and Neurons were seeded onto the nanofibers. Results indicated that the SF/TSF nanofibers promote cell attachment and spreading, suggesting that these nanofibers could be a candidate scaffold for blood vessel and nerve injury recovery.  相似文献   

8.
The scrap rubber powder (SRP) could be compression moulded to form elastomer via in situ interfacial reactions. In this study, SRP/NR (85/15) blends with good performance could be prepared by incorporating a little amount (lower than 5 phr of SRP and NR) of m-phenyl bismaleimide (BMI) in the compositions. The mechanical properties and the interface of SRP/NR (85/15, w/w) blends (base blend) were investigated. The results showed that the processing temperature, time, and BMI content have significant effects on the mechanical properties of the blends. The optimum BMI content and processing condition were determined as 5 wt.% and 180 C/10 min. The mechanical properties, especially the elongation at break, of the elastomers could be improved further by ultraviolet (UV) exposure. With UV exposure, the tensile strength, elongation at break and tear strength of the modified base blend were determined as 10.4 MPa, 260% and 24 KN/m respectively. The FTIR results indicated that the BMI could be grafted onto the SRP surface under UV exposure. The composition with UV exposure had more uniform dispersion of the BMI and improved interfacial adhesion. The glass transition temperature (Tg) of the blends was increased by increasing the processing temperature, processing time or the introduction of UV exposure.  相似文献   

9.
用分子量为10万的聚乳酸(PLLA)对丝素膜进行改性,研究不同的聚乳酸加入量对丝素膜性能的影响,对聚乳酸/丝素共混膜进行了一系列表征。万能电子试验机的测试结果表明,经聚乳酸改性后,丝素膜的断裂强度,断裂伸长率有了较大的改善,当加入聚乳酸占丝素质量为5%时,丝素膜的强度可达到27.1 MPa,伸长率达4.4%; 改性后的丝素膜的亲水性有一定程度降低,溶失率则明显减小,透汽透湿性也有所提高;红外光谱测试表明,改性后的丝素膜含有较多的β构象成分。  相似文献   

10.
The dynamic mechanical response of several binary mixtures of a styrene–butadiene copolymer and high cis‐polybutadiene has been studied. The loss tangent and shear modulus were measured with a free damping torsion pendulum at temperatures between 143 and 343 K in argon atmosphere. From the loss tangent data the glass transition temperature of each sample was evaluated. The results can be represented by the Fox equation that relates the glass transition temperature of the blend with that of constituent polymers. The influence in the loss tangent data of the crystallization of the high cis BR used in the blend is discussed. A study of the separation of the crystalline and amorphous parts in the polybutadiene using the storage modulus data is presented. Finally, the loss of crystallinity at different contents of SBR in the blend is analysed using the dynamic mechanical data. © 2000 Society of Chemical Industry  相似文献   

11.
The phase behavior of binary blends of acrylonitrile/methyl acrylate/butadiene terpolymer (B210) and poly(ethylene-co-maleic anhydride) (PEMA) was examined based on thermal analysis and optical microscopy. Miscibility of these polymer blends was recognized over a wide range of compositions. The appearance of phase separation during subsequent heatings above the glass transition temperature (Tg) of these blends was associated with a lower critical solution temperature (LCST) behavior. Rheological characteristics such as shear storage modulus (G′), loss modulus (G″) and complex viscosity have been shown to depend on the amount of PEMA in the blend. Mechanical properties including the tensile strength and flexural modulus also were found to be related to the composition of the blend. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The objectives of this study were to reveal molecular structures of protein among different types of the dried distillers grains with solubles (100% wheat DDGS (WDDGS); DDGS blend1 (BDDGS1, corn to wheat ratio 30:70%); DDGS blend2 (BDDGS2, corn to wheat ratio 50:50 percent)) and different batches within DDGS type using diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Compared with BDDGS1 and BDDGS2, wheat DDGS had higher (p < 0.05) peak area intensities of protein amide I and II and amide I to II intensity ratio. Increasing the corn to wheat ratio form 30:70 to 50:50 in the blend DDGS did not affect amide I and II area intensities and their ratio. Amide I to II peak intensity ratio differed (p < 0.05) among the different batches within WDDGS and BDDGS1. Compared with both blend DDGS types, WDDGS had higher α-helix and β-sheet ratio (p < 0.05), while α-helix to β-sheet ratio was similar among the three DDGS types. The α-helix to β-sheet ratio differed significantly among batches within WDDGS. Principal component analysis (PCA) revealed that protein molecular structures in WDDGS differed from those of BDDGS1 and between different batches within BDDGS1 and BDDGS2. The α-helix to β-sheet ratios of protein in all DDGS types had an influence on availability of protein at the ruminal level as well as at the intestinal level. The α-helix to β-sheet ratio was positively correlated to rumen undegraded protein (r = 0.41, p < 0.05) and unavailable protein (PC; r = 0.59, p < 0.05).  相似文献   

13.
Regenerated Antheraea pernyi silk fibroin films prepared from calcium nitrate solution were treated with heat for crystallization. The structural and conformational changes caused by heat treatment were investigated with X-ray diffraction, infrared spectroscopy, and differential scanning calorimetry. The temperature and treatment time of heat greatly influenced the conformation of the regenerated films. The conformational change was caused by heat treatment over 230°C, and the transition was enhanced by increasing time and temperature. The contents of α-helix, β-sheet, and random-coil conformations were calculated and examined to investigate the effect of heat treatment on the conformational changes. The β-sheet structure could be transformed from a random-coil conformation on heat treatment, whereas the content of α-helix structure was nearly unchanged, regardless of heat-treatment conditions. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2271–2276, 2001  相似文献   

14.
The airborne pheromone emitted by calling almond moth (Ephestia cautella) females kept in individual glass cages was mainly adsorbed on the cage surface (60–65%), but sufficient pheromone was transferred by the airflow to the extended capillaries to be measured. Four calling positions of almond moth females in the glass cages were defined. The position in which the female faced the upwind flow and the gland was free to release the pheromone was the more commonly adopted position (39% of calling females). No significant difference was found in the blend proportion between capillary and cage washings in each calling position or between calling positions. The pheromone blend and amount emitted from each of five individual females was measured on three consecutive nights and both fluctuated during the 11 hr of collection, starting 3 hr before the onset of scotophase and continuing for 8 hr into it.  相似文献   

15.
Regenerated Bombyx mori silk fibroin in formic acid was electrospun and the morphological, chemical and mechanical properties of these nanofibers were examined by field emission environmental scanning electron microscopy (FESEM), Raman spectroscopy (RS), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and tensile testing. FESEM indicated that the average fiber diameter was less than 100 nm and circular in cross section. This paper maps the silk fibroin molecular conformations of each step of the sample preparation and the electrospinning process. The secondary structural compositions (random and β-sheet) of the fibroin were determined by FTIR and RS. The crystallinity index of the electrospun fiber, calculated as the intensity ratio of 1624 (β-sheet) and 1663 (random) cm−1 FTIR bands was higher than that of the pristine fiber. Raman spectra of the amide I (1665 cm−1, random) to amide III (1228 cm−1, β-sheet) ratio of the electrospun fiber was less than that of the pristine fiber indicative of higher β-sheet content. The fiber crystallinity, determined by XRD, showed a lower value for the electrospun fiber. The electrospun fiber shows small but significant increases in the β-sheet content in comparison with the pristine fiber. Dissolution of fibroin in formic acid enhances β-sheet crystallization and may facilitate β-sheet formation in electrospun fiber. The electrospun random silk mat had a Young's modulus, ultimate tensile strength and strain of 515 MPa, 7.25 MPa and 3.2%, respectively.  相似文献   

16.
Silkworms have been developed over thousands years to optimize folding and crystallization of fibroin under highly controlled conditions which have resulted in their efficient fiber formation. In this paper, we reconstructed the three-dimensional architecture of the spinneret of a wild silkworm Samia cynthia ricini from approximately 1000 optical micrographs of the semi-thin cross sections. The chitin plates and muscles were observed in the silk press part together with large change in the diameter of the spinneret lumen at the press part by large shear stress. This is similar to the case of the spinneret of Bombyx mori silkworm, indicating that the structural change in the silk fibroin of S.c. ricini silkworm occurs exclusively at the silk press part due to large shear stresses. Molecular dynamics (MD) calculations were then performed to study the structural change that occurs in the crystalline region of S.c. ricini silk fibroin under shear stress. Namely, using the peptide AGGAGG(A)12GGAGAG as a model of the crystalline part of the silk fibroin under different shear stresses in the presence of water molecules and followed by molecular mechanics (MM) calculation after removal of water molecules. The simulation indicates that the Ala residues in the model peptides adopt a predominantly β-sheet structure under shear stresses of above 1.0 GPa.  相似文献   

17.
从丝素水溶液中再生的丝纤维的结构与性能   总被引:2,自引:0,他引:2  
通过使用表面皿直接拉伸、毛细管重力纺丝和人工拉伸3种不同的成丝方法,从高浓度再生丝素水溶液中制得了丝纤维。用偏光显微镜观察了丝纤维的取向,用拉曼光谱仪和Instron拉力仪表征了丝纤维的结构和力学性能。结果发现,经毛细管剪切流动后再拉伸有利于再生丝性能的提高,所得的丝有较好的取向和较多的β折叠结构,力学性能也相对较好。剪切在丝纤维的成形过程中起重要的作用。  相似文献   

18.
The effects of TiO2 nucleating agent and CeO2, ZrO2, La2O3 and Y2O3 network modifiers on crystallization and structure of borosilicate glasses were systematically investigated. It was found that the nucleating Ti4+ ions entered [TiO6] octahedron, participated in network formation and promoted glass crystallization, while the network modifiers induced α-quartz formation, favoring its crystallization as major crystal phase, which positively affected thermal expansion coefficient of the glass–ceramics. Network modifiers allowed strengthening glass network and conduced α-quartz-like structure, which was helpful for α-quartz crystallization.  相似文献   

19.
Thermal analysis of solution precipitated blends of two crystallizable polymers, poly(vinylidene fluoride) (PVDF) and copoly(chlorotrifluorethylene-vinylidene fluoride) (copoly(CTFE-VDF)), has been carried out to study the transition temperatures, crystallinity, and crystallization rates. PVDF crystallizes over the whole blend composition either during precipitation from solution or upon cooling from the melt. The high degree of crystallinity attained, higher than in PVDF by itself, suggests the occurrence of partial PVDF-copolymer cocrystallization. The melt crystallization temperature, decreasing with cooling rate, is lower in PVDF-rich blends than for lean blends. However, the heat of crystallization increases with cooling rate, suggesting that the crystal composition depends on crystallization rate. No significant melting temperature depression due to blending was observed. However, the blends glass transition (Tg) changes linearly with composition, but less than expected by any mixing rule applicable to compatible systems. Annealing of the blends above Tg results in an additional crystalline phase consisting mainly of the copolymer. The amount of these crystals increases with PVDF content, due to partial cocrystallization and kinetic effects. The addition of the copolymer to PVDF results in a volume-filling spherulitic structure consisting of spherulites which decrease in size with increasing copolymer content.  相似文献   

20.
采用聚乙二醇400与环氧氯丙烷合成聚乙二醇缩水甘油醚(PEGO)并对丝素蛋白(SF)进行改性,采用红外光谱、X射线衍射、差式量热扫描、扫描电镜和物理性能测试对共混膜的结构和性能进行表征,表明PEGO的加入使得丝素蛋白从silkⅠ结构向silkⅡ构象转变,而当m(PEGO)∶m(SF)>50%的时候,共混膜的二级结构却呈现相反变化。共混膜的含水量由共混膜的表面粗糙度和亲水性决定,在m(PEGO)∶m(SF)<50%时,其含水量随粗糙度增加而减少;在m(PEGO)∶m(SF)>50%时,随着PEGO的增加,SF/PEGO共混膜的含水量增加。当m(PEGO)∶m(SF)=50%时,共混膜SP50具有最好的热稳定性和良好的机械性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号