首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Phosphor SrGa2S4Eu2 was synthesized with a high temperature solid state reaction.Its absorption spectrum, photoluminescence spectra, and fluorescence lifetime were studied in details.The excitation spectrum extended from UV to visible light region, and matched the emission of GaN chip.(Sr1-xEux)Ga2S4 emits strong green light and the concentration quenching did not occur; while the thermal quenching was evident.The emission peak shifted to long wavelength with increasing Eu2 concentration because of the changing of the crystal field strength.The lifetime of Eu2 ion was in the order of microsecond, which was reasonable for d→f transition.The electroluminescence spectrum of as-fabricated PC-LED at IF=20 mA was measured and most of the blue light of blue-LED chip at 460 nm was absorbed by the phosphor and simultaneously down-converted into an intensive green light at 540 nm.The color coordinate was (0.32, 0.63).SrGa2S4Eu2 was a promising phosphor for GaN-based green LEDs.  相似文献   

2.
A barium-phosphate glass matrix was co-doped with Sn O and Eu2O3 for investigating on material luminescent properties. Optical absorption and X-ray photoelectron spectroscopy(XPS) were employed in the characterization of tin species. The prevalence of divalent tin was indicated by the XPS data in accord with a conspicuous absorption band detected around 285 nm ascribed to twofold-coordinated Sn centers(isoelectronic with Sn2+). Photoluminescence(PL) excitation spectra obtained by monitoring Eu3+ emission from the 5D0 state revealed a broad excitation band from about 250 to 340 nm, characteristic of donor/acceptor energy transfer. Under excitation of such at 290 nm, the co-doped material exhibited a bright whitish luminescence, and a four-fold enhanced Eu3+ emission relative to a purely Eu-doped reference. Time-resolved PL spectra recorded under the excitation at 290 nm exposed a broad band characteristic of the twofold-coordinated Sn centers and emission bands of Eu3+ ions, which appeared well separated in time in accord with their emission decay dynamics. The data suggested that light absorption took place at the Sn centers(donors) followed by energy transfer to Eu3+ ions(acceptors) which resulted in populating the 5D0 emitting state. Energy transfer pathways likely resulting in the enhanced Eu3+ photoluminescence and the consequential light emission were discussed.  相似文献   

3.
The accumulation and absorption kinetics of La by fish ( Oozias latipes) from both water and food were tested in fresh water. The effects of La concentration in water and food and the existence of fulvic acid on the absorption were investigated. It was demonstrated that the amount of La accumulated in fish increases with the increase in La concentration in water and food and exposure duration, which the normal physiological activity of fish was inhibited. With fulvic in the system, the absorption rate decreases significantly indicating that the fulvie combined La is not available to the fish uptake.  相似文献   

4.
Eu3+ doped CaWO4 with tetragonal system were prepared at comparatively low temperature (125 ?C) in ethylene glycol medium. The phosphor was further investigated by X-ray diffractometer (XRD), photoluminescence spectrophotometer (PL), Fourier transform infra red (FT-IR) spectroscopy and transmission electron microscopy (TEM). XRD analysis indicated a decrease in the unit cell volume of CaWO4 with increasing Eu3+ ion concentration. It indicated the homogeneous substitution of Ca2+ ions in CaWO4 by the Eu3+ ions. TEM images showed that the particle size ranged from 20 to 200 nm and it could extend the application of the nanoparticles. The photoluminescence study showed that the intensity of electric dipole transition (5D0→7F2) at 614 nm dominated over the magnetic dipole transition (5D0→7F1) at 592 nm. The optimum concentration of Eu3+ for the highest luminescence was found to be 20 at.%. The as prepared samples were found to be dis-persible in water and methanol.  相似文献   

5.
The samples of YVO4·xTa2O5:Eu3+(x=0.45,0.35,0.25,0.15,0.05)were synthesized by the conventional solid state reaction.The structure of the prepared sample was checked by the X-ray diffraction.XRD measurements at room temperature were confirmed that the prepared YVO4·xTa2O5:Eu3+ consisted of two phases。One phase was YVO4,which is tetragonal according with the JCPDS-Card(17-0341);the other phase was YTaO4,which is according with the JCPDS-Card(72-2018).The spectrum property of the sample was studied under the VUV.The effects of Ta doped on the luminescent properties of sample were investigated and it was found that some Ta doped could highlight the absorption of matrix in VUV region.The emission spectrum was dominated by the red peaks at 613 and 619 nm due to the electric dipole transition 5D0→7F2 of Eu3+.It indicated that Eu3+ occupied a site lacking inversion symmetry.There was one band peaked at 155 nm in the excitation spectrum of the sample,it could be assigned to the absorption of the host.  相似文献   

6.
The nanopowders of SnO2 doped with different Eu3+ concentrations were synthesized using the modified Pechini method. The Eu3+ concentrations were high above solubility limit. The average size of crystallites was controlled by the sintering temperatures. The structure and the morphology of obtained powders were examined using the XRD (X-ray diffraction) and TEM (transmission electron microscopy) analyses. The Eu2Sn2O7 phase separation was observed at relatively high concentration of Eu3+ ions. The ZnS:Ag micropowders were mixed with the Eu3+:SnO2 powders and their normalized emission was used to measure a relative efficiency of Eu3+:SnO2. The photoluminescence spectra of mixed powders were measured in function of Eu3+ concentration and average size of nanocrystallites. The reference peak method was used for comparison of intensities of the samples and selection of optimal one. The influence of the average grain size and Eu3+ concen-tration on the phosphor’s efficiency was discussed. The presented results confirmed the rightness of synthesis of the Eu3+:SnO2 in form of nanocrystalites with relatively high Eu3+ concentration.  相似文献   

7.
The Eu(III) separation in supported dispersion liquid membrane (SDLM),with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dis-solved in kerosene as the membrane solution,was studied.The effects of pH value,initial concentration of Eu(III) and different ionic strengths in the feed phase,volume ratio of membrane solution and stripping solution,concentration of HNO3 solution,concentration of carrier,different stripping agents in the dispersion phase on the separation of Eu(III) were also investigated,respectively.As a result,the optimum separation conditions of Eu(III) were obtained as the concentration of HNO3 solution was 4.00 mol/L,concentration of D2EHPA was 0.160 mol/L,and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase,and pH value was 5.00 in the feed phase.Ionic strength had no obvious effect on the separation of Eu(III).Under the optimum conditions studied,when initial concentration of Eu(III) was 1.00×10–4 mol/L,the separation rate of Eu(III) was up to 94.2% during the separation period of 35 min.The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry.The results were in good agreement with the literature data.  相似文献   

8.
Nanowires/nanorods of europium/terbium orthophosphate monohydrate with Eu3+ concentration of 6,11,and 20 at.% were prepared by microwave synthesis method.The effects of Eu3+ doping concentration on structure,morphology and optical properties of nanoma-terials were also investigated.The results showed that,for all studied Eu3+ doping concentrations,a single-crystalline phase of rhabdo-phane-type(Eu,Tb) PO4·H2O nanowires/nanorods was obtained by using microwave heating of an aqueous solution of terbium(III) nitrate,europium(III) nitrate and NH4H2PO4 with pH=2.The length and width of these nanowires/nanorods ranged from 150 to 300 nm and from 10 to 50 nm,respectively.The evidence of energy transfer from Tb3+ to Eu3+ due to the energy overlap between the donor Tb3+ and the acceptor Eu3+ was observed obviously via a significant enhancement in the luminescent intensity of Eu3+.  相似文献   

9.
Two novel luminescent Eu(III) complexes with the formulas(NIP)Eu(DBM)3 1 and(ENIP)Eu(DBM)3 2(NIP=2-(naphtha-len-1-yl)-1H-imidazo [4,5-f] [1,10] phenanthroline,ENIP=1-ethyl-2-(naphthalen-1-yl)-1H-imidazo [4,5-f] [1,10] phenanthroline,DBM= dibenzoylmethanato) were successfully synthesized and characterized by IR and elemental analysis.The UV-vis absorption spectra and pho-toluminescence properties of the complexes were investigated,and the irradiation at the absorption band between 300-400 nm of europium complexes either in solution or in the solid state led to the emission of a sharp red band at ~610 nm,a characteristic Eu3+ emission due to the transition of 5D0→7F2.Furthermore,the weak emission bands around 587 and 595 nm attributed to 5D0→7F0 and 5D0→7F1 transition were also displayed in the emission spectra.These results demonstrated that the Eu(III) ion was sensitized efficiently by the ligand and displayed photoluminescence with high intensity,narrow half-peak width,and monochromic light.The excited-state lifetimes of 1 and 2 were in the microsecond time scale,but the photoluminescence quantum yield of 2(0.03) was two times higher than that of 1(0.01) which should be at-tributed to the effect of the ethyl substituting in ENIP.  相似文献   

10.
The extraction of low concentration rare earth elements at high phase ratio was investigated. The traditional extraction set-up, such as mixer-settler, have drawbacks of easy emulsification, difficult separation and low efficiency if operated at the above condition. Membrane dispersion micro-extractor,owing to its well-dispersed, high surface-to-volume ratio and fast mass transfer rate, was employed in our work. Nd(Ⅲ),Eu(Ⅲ),Er(Ⅲ) were chosen to represent light, medium,heavy rare earth elements(REEs). The extraction process of REEs with 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507) was investigated by membrane dispersion micro-extractors. Firstly, the extraction equilibrium of these three elements was explored in the stirred conical flasks, and it is indicated that the extraction efficiencies can be 0.95, 0.97 and 0.98, respectively within 40 min at phase ratio of 100:1. Then the effects of operational conditions such as the residence time, organic and aqueous flow rates on extraction efficiency were also explored in micro-extractors. The results indicate that the efficiency decreases and then increases if increasing aqueous phase flow rate, residence time and droplets' diameter are the key factors of this process. Increasing the phase ratio reduces the extraction efficiency significantly. When the REEs solution has an initial pH of 4.00, the flow rates of continuous and dispersed phase are 40 and 1.6 mL/min,respectively, and 90 mg/L Nd(Ⅲ), Eu(Ⅲ) and Er(Ⅲ) is extracted by 1 mol/L P507 at the out-let length of8 m. The extraction efficiencies are 0.978,0.983 and 0.991, respectively. Finally the stripping process was also studied with the micro-extractor. The stripping efficiencies of Nd(Ⅲ), Eu(Ⅲ) and Er(Ⅲ) can reach0.99, 0.96 and 0.91, respectively when the out-let length is 8 m and the concentration of hydrochloric acid is 1 mol/L. The developed approach offers a novel and simple strategy on the fast extraction and enrichment of low concentration rare earth elements from waste water.  相似文献   

11.
YAl3 (BO3)4: Eu3 phosphors were prepared by the conventional solid state reaction. The phase structure and morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Doping YAl3(BO3)4: Eu3 phosphors with concentration of Eu3 ions of 0, 2, 5, 8 and 10 mol% were studied and their luminescent properties at room temperature were discussed. The excitation spectrum of Y0.95Eu0.05Al3(BO3)4 was composed of a broad band centered at about 252 nm and a group of lines in the longer wavelength re- gion. In the emission spectra, the peak wavelength was about 614 nm under a 252 nm UV excitation. The optimal doping concentration of Eu3 ions in YAl3(BO3)4: Eu3 phosphors was 8 mol%.  相似文献   

12.
The novel phosphors of La 2 MoO 6 activated with the trivalent rare earth Ln 3+ (Ln=Eu, Sm, Dy, Pr, Tb) ions were synthesized by solid state reactions at high temperature in air atmosphere, and their phase impurities and luminescent properties were studied. The photoluminescence (PL) excitation and emission spectra, and decay curves were employed to study their luminescence properties. The lifetimes of the characteristic emissions from Ln 3+ ions were in the order of millisecond except Pr 3+ ions. (LaEu 1-x ) 2 MoO 6 was a promising phosphor for practical application and the optimum concentration was x=0.075. The concentration quenching mechanism of Eu 3+ was also discussed by theoretical fitting using Burshtein model.  相似文献   

13.
Solvent extraction has been the most widely used technique for rare earths separation. In this study, thermodynamics and kinetics of lutetium extraction with HEH(EHP) in hydrochloric acid medium were investigated. The extraction mechanism and the relevant parameters were determined by experiment research which can guide the practical extraction process. The data indicated that chloride ion had no effect on lutetium extraction, the rate constant increased when stirring speed was enhanced. Effects of temperature, HEH(EHP) concentration, acidity, and chloride concentration were also studied. Thickness of the diffusion film was also calculated to be 4.66×10~(–3) cm at 150 r/min.  相似文献   

14.
Yellow-emitting YAG:Ce3+ nanocrystalline phosphors were prepared by citrate sol-gel combustion method using citric acid as the fuel and chelating agent. The influence of mole ratio of citric acid to metallic ions (MRCM), pH value of the solution, calcination temperature and Ce-doped concentration on the structures and properties of as-prepared powders were investigated in detail. Higher crystallinity and better luminescence performance powders were obtained at MRCM=2, pH=3 and the calcination temperature of 1200 °C. The phosphors exhibited the characteristic broadband visible luminescence of YAG:Ce. The optimum concentration of Ce3+ was 1.0 mol.%, and the concentration quenching was derived from the reciprocity between electric dipole and electric quadrupole (d-q). Especially, the pH value of the solution was a key factor to obtain a stable sol-gel system and then obtain pure and homogeneous rare earth ions doped YAG phosphors at a lower tem-perature. The Y3Al5O12:Ce0.03 phosphor with optimized synthesis-condition and composition had a similar luminescence intensity with the commercial phosphor YAG:Ce.  相似文献   

15.
Large amount of high concentration acidic wastewater would be produced in the conversion process of chloride rare earth into oxide rare earth.It was a mixed solution of oxalic acid and hydrochloric acid,so the recycling use was very difficult.The method of liquid-liquid extraction was proposed in this paper to achieve wastewater treatment and reclamation.The mechanism of extraction of oxalic acid from the wastewater with the systems of 50% TOB+45% kerosene and 5% 2-ethyl hexanol was investigated.The composition and structure of the extracted species and the establishment of the mathematical model of the oxalic acid extraction were determined by the use of saturation method,equimolar series method.The results showed that extraction of oxalic acid by TOB was a neutral association extraction,oxalic acid existed mainly in a molecular form in the organic phase,and the extraction combination ratio was 2:1.The duality extraction system composed of extractant TOB and TOC had synergistic extraction effect on oxalic acid and chlorhydric acid,and the extraction dislribution ratio was improved greatly.The optimum volume fiaction of TOB was 0.6-0.8.  相似文献   

16.
The extraction and stripping of ytterbium(Ⅲ) from sulfuric acid medium using Cyanex 923 in heptane solution was investigated. The effects of extractant concentration, pH and sulfate ion as well as stripping agents, acidity and temperature on the extraction and stripping were studied. The equilibrium constants and thermodynamic parameters, such as ΔH (10.76 kJ·mol-1), ΔG (-79.26 kJ·mol-1) and ΔS (292.41 J·K-1·mol-1), were calculated. The extraction mechanism and the complex species extracted were determined by slope analysis and FTIR spectra. Furthermore, it was found that the extraction of Yb (Ⅲ) from sulfuric acid medium by Cyanex 923 increased with pH, concentration of SO42-, HSO4-, and extractant concentration, and approximately a quantitative extraction of Yb(Ⅲ) was achieved at an equilibrium pH near 3.0, and the extracted complex was YbSO4(HSO4)·2Cyanex923(o).  相似文献   

17.
Y2O3: Eu nanocrystals were synthesized by EDTA complexing sol-gel process at a relatively low temperature, in which ethylen-diamine-tetraacetic acid (EDTA) and polyethylene glycol (PEG) were used as the chelating agent and polymerization agent respectively. Formation process of Y2O3:Eu and structure characterization were carried out by TG-DTA, XRD, SEM/EDX. The results show that pure cubic phase Y203: Eu nanocrystalsere is produced after the precursor calcinated at 600℃ for 2 h, and the crystallinity increases with increasing calcination temperature. The nanoparticles of the Y2O3: Eu are basically spherical in shape. The mean particle size increases from about 30 to 70 nm when the calcination temperature increases from 600 to 1000℃. The luminescent properties of phosphor were analyzed by measuring the excitation and emission spectra. The main emission peak of the sample is around 612 nm, resulting in a red emission. The emission intensity increases with the calcination temperature. Compared with microsized Y2O3: Eu phosphors prepared by a conventional method, nanosized Y2O3: Eu synthesized by the present work, gives and a clear red shift in the emission spectrum. Moreover, the quenching concentration of Eu is raised.  相似文献   

18.
YVO4:Eu nanocrystalline phosphors were successfully prepared at 400 oC in equal moles of NaNO3 and KNO3 molten salts. NaOH concentration and annealing temperature played important roles in phase purity and crystallinity of the nanocrystallines, and the optimum NaOH concentration and annealing temperature were 6:40 and 400 oC, respectively. The nanocrystallines were well crystallized with a cubic morphology in an average grain size of 18 nm. Upon excitation of the vanadate groups at 314 nm, YVO4:Eu nanocrystallines exhibited the characteristic emission of Eu3+, which indicated that there was an energy transfer from vanadate groups to Eu3+. Moreover, the influence of superficial effect, especially the dangling bonds on the structure and luminescent properties of the nanocrystallines was discussed in detail.  相似文献   

19.
ZnTiO3:Eu3+ phosphors were synthesized with different concentrations of Eu3+ doping through sol-gel method. The samples were calcined at different temperatures for 2 h in air. The synthesized powders were characterized by X-ray diffraction(XRD), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), transmission electron microscopy(TEM), Raman and photoluminescence spectroscopy. The XRD results showed that the Zn Ti O3:Eu3+ phosphors doped with different concentrations of Eu3+ ions calcined at 600 oC were of single phase, which indicated that the Eu3+ ions had been successfully incorporated into the Zn Ti O3 host lattice and did not destroy the lattice structure of Zn Ti O3 host. The Raman spectrum, SEM and TEM also proved that the doping of Eu3+ did not change the lattice structure of hexagonal Zn Ti O3 host. The photoluminescence(PL) of Eu3+ ions with the main emission peak at 614 nm was observed to increase with Eu3+ concentrations from 0.5 mol.% to 2.0 mol.% and decreased when the concentration was increased to 2.5 mol.%. The decrease in the PL intensity at higher Eu3+ concentrations could be associated with concentration quenching effect. The CIE1931 chromaticity diagram(x, y) of Zn Ti O3:2.0 wt.%Eu3+ phosphors were located in the red region(x=0.652, y=0.347). The luminescence properties suggested that Zn Ti O3:Eu3+ phosphors might be regarded as a potential red phosphor candidate for light emitting diodes(LEDs).  相似文献   

20.
Deep-sea mud rich in rare earth yttrium has received lots of attention from the international community as a new resource for Y. A novel process, which mainly includes acid leaching, solvent extraction, and oxalic acid precipitation-roasting, is proposed for recovery of Y from deep-sea mud. A series of experiments were conducted to inspect the impacts of various factors during the process and the optimum conditions were determined. The results show that the Y of deep-sea mud totally exists in apatite minerals which can be decomposed by hydrochloric acid and sulfuric acid solution. The highest leaching efficiency of Y is 94.53% using hydrochloric acid and 84.38% using sulfuric acid under the conditions of H~+concentration 2.0 mol/L, leaching time 60 min, liquid-solid ratio 4:1 and room temperature 25 ℃(only in case of sulfuric acid, when using hydrochloric acid, the leaching temperature should be 60 ℃). Because of the much lower leaching temperature, sulfuric acid leaching is preferred. The counter current extraction and stripping tests were simulated by a cascade centrifugal extraction tank device. Using 10 vol% P204,15 vol% TBP and 75 vol% sulfonated kerosene as extractant, 98.79% Y~(3+) and 42.60% Fe~(3+) are extracted from sulfuric acid leaching liquor(adjusted to pH = 2.0) after seven-stage counter current extraction with O/A ratio of 1:1 at room temperature, while other metals ions such as Al~(3+), Ca~(2+), Mg~(2+)and Mn~(2+) are almost not extracted. The Y~(3+) in loaded organic can be selectively stripped using 50 g/L sulfuric acid solution and the stripping efficiency reaches 99.86% after seven-stage counter current stripping with O/A ratio of 10:1 at room temperature, while only 2.26% co-extracted Fe~(3+) is stripped. The Y~(3+) of loaded strip liquor can be precipitated by oxalic acid to further separate Y~(3+) and Fe~(3+). The precipitation efficiency of Y~(3+) in loaded strip liquor can be 98.56% while Fe~(3+) is not precipitated under the conditions of oxalic acid solution concentration 200 g/L, quality ratio of oxalic acid to Y of 2, and precipitation time 0.5 h. And the precipitate was roasted at 850 ℃ for 3 h to obtain the oxide of Y in which the purity of Y_2 O_3/REO is 79.02% and the contents of major non-rare earth impurities are less than 0.21%.Over the whole process included acid leaching, solvent extraction, and oxalic acid precipitation-roasting,the yttrium yield is 82.04%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号