首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
深水钻井过程中高温会对钻井液性能和井下及井口设备、工具的密封件等造成严重损坏,因此准确的钻井温度模拟及控制至关重要。结合深水钻井工艺和高温地层特点,充分考虑钻井系统输入能量和隔水管对井筒温度剖面的影响,建立了新的深水钻井井筒循环温度分析模型,重点分析了温度剖面的影响因素及海底防喷器处的温度变化规律,结果表明:本文建立的深水钻井井筒循环温度分析模型计算结果与现场实测数据吻合;钻井系统输入能量、隔水管增压泵排量对井筒温度剖面的影响不可忽略,在钻井设计和作业阶段可分别通过优化井眼轨迹、采用高比热钻井液和增加钻井液润滑性、减小钻井液入口温度等方法来降低井底温度。本文研究成果可为深水高温钻井井底温度预测和控制提供理论指导。  相似文献   

2.
钻头机械能对深水钻井井筒温度场的影响分析   总被引:2,自引:0,他引:2  
从影响深水钻井井筒温度分布的因素出发,在常规钻井井筒温度计算理论和模型的基础上,应用能量守恒方法,建立了深水钻井井筒温度预测模型,综合考虑了钻头机械能破岩生热、钻井液循环摩阻生热等诸多热源对钻井液温度场的影响。结果表明,钻头机械能在破岩过程中产生的热量流入地层岩石,钻井液在井底携岩过程中温度产生了瞬时波动,温度波动范围为2~4℃,钻头机械能是研究深水钻井井筒温度场不可忽略的一部分。所建模型的求解结果与实测结果相比,最大误差小于5%,证明该模型具有较高的精度。  相似文献   

3.
深水钻井井筒全瞬态传热特征   总被引:13,自引:4,他引:9  
宋洵成  管志川 《石油学报》2011,32(4):704-708
深水钻井作业期间的井筒温度是深水钻井设计和安全钻井的重要基础数据。基于深水钻井液循环时井筒与地层和海水的传热机理,建立了全瞬态深水钻井液循环温度计算模型,模型与Holmes实验井实测温度吻合程度较高。利用一口深水模拟井数据,分析了水深、水温、隔水管保温层等因素对钻井液循环温度的影响。研究表明,深水井筒温度随井深变化幅度小,一般不超过30℃;水深相差500 m时,一般会使井底温度相差约5℃,但基本不影响钻井液出口温度;隔水管保温层对井筒温度影响大,而季节变化对深水钻井液的循环温度基本没有影响。  相似文献   

4.
在深水海域进行超深井钻井时,钻井液温度变化幅度较大,温度剖面的准确预测对于深水超深井的安全钻进至关重要。为了准确预测深水超深井钻井温度剖面,为深水超深井钻井设计提供借鉴,通过能量守恒原理建立了钻井温度剖面的计算模型,考虑不同井段的传热方式不同,将井身结构分为海水段、套管段、裸眼段进行分析,并通过数值法求解。通过实例计算对影响温度剖面的因素进行了分析。结果表明,钻井液循环300 min后,钻井液温度剖面趋于稳定;钻井液在整个循环过程中,温度差可达150 ℃;排量对井壁温度的影响较小,对井底钻井液温度的影响较大,且排量越大,井底温度越高;由于目的层较深,入口温度对于井底温度的影响较小。研究结果可为我国深水超深井安全钻井提供参考。  相似文献   

5.
深水钻井作业时,海水对流换热作用对井内循环温度计算影响显著。考虑海水区域的对流换热,管柱内、环空内流体的轴向、径向热传导,以及管柱壁径向热传导,建立了深水钻井作业井下循环温度场的预测模型,讨论了海水对流换热、有无隔水管和一维、二维地层边界条件的影响。结果表明:海水对流对井下循环温度的影响较大,必须考虑海水区域的对流作用;无隔水管工况下,海域内管柱内流体、筒壁的温度明显低于有隔水管的工况;二维地层边界条件计算速度较慢且计算精度会受影响,无特殊需求推荐采用一维地层边界条件。与现场实测温度对比,本文模型计算值与实测值基本吻合,验证了本文模型的正确性。  相似文献   

6.
钻头的性能主要通过机械钻速来评判,而井底钻压是影响机械钻速的主要参数。特别对于水平井,其水平段摩阻大、不易施加钻头载荷,导致井底钻压与地面钻压差异较大,因此计算和测量井底实际钻压非常重要。综合Johancsik模型和Aadnoy 3D模型并考虑管柱的刚度,建立了摩阻扭矩模型。井底钻压的计算分为两步,即先使用钻头空钻数据计算钻柱与井壁间的摩擦因数,然后用所得摩擦因数预测钻井时的井底钻压。同时,在Visual C++2013的集成开发环境下,利用C#开发了井底钻压的计算程序,使用开发的程序对摩擦因数和井底钻压进行了计算。结果表明:计算所得井底钻压在数值和变化趋势方面与实测值吻合较好,钻压计算模型和程序能够依据地面钻井数据准确预测井底钻压。井底钻压计算模型和程序可用于钻井事后分析,也可与常规自动送钻系统集成实现井底钻压的准确控制,从而提高钻头性能和钻井效率、降低钻井成本。  相似文献   

7.
由于受深水低温特性的影响,深水钻井中,井筒流体温度分布的计算与陆地钻井中井筒流体温度分布有所不同。隔水管增压管线排量的存在使流体温度进一步降低,因此深入了解增压管线内排量对深水钻井井筒流体温度分布的影响规律十分重要。基于无隔水管增压排量下深水温度分布的计算方法,考虑突扩孔道流动的问题,结合热力学相关理论,对加隔水管增压管线排量时的深水钻井井筒流体温度分布进行了研究,建立了该情况下温度分布的预测方法,得到了井筒流体温度分布。研究结果表明:隔水管增压管线排量对深水井筒流体的温度分布影响明显,且影响区域较大;较管柱而言,增压排量对环空内井筒流体温度场分布的影响更为明显;因钻井液和流动方向的不同,较环空而言,管柱内钻井液温度受增压排量的影响更深。因此,研究深水钻井中的深水温度分布时,隔水管增压排量的影响必须加以考虑。   相似文献   

8.
井下压力温度测试技术在徐深5井的应用   总被引:1,自引:0,他引:1  
针对深层欠平衡钻井存储式随钻井下压力温度测试工具和配套软件存在的问题,进行了改进与完善,解决了井下仪器的振动问题,延长了钻井过程中的有效工作时间,改进后的工具在徐深5井进行了应用,该井是大庆油田深层加快勘探的一口重要的欠平衡预探井。通过应用,实测出该井第三次开钻井段钻井过程中不同情况下的井底压力、温度。利用关井求压时的井底压力变化能够准确地计算出地层压力、井底负压值的大小,对比设计井底压力值,为科学指导下步钻井,精确控制井底负压值提供依据。利用井底压力的实测值与理论值之间的误差分析表明,由于岩屑的影响造成井底压力增加,导致井下出现过平衡,影响欠平衡钻井的效果。同时,还介绍了实测井底压力温度数据在环空岩屑携带的情况、实际钻头压降大小和井下流体温度变化等方面的应用。  相似文献   

9.
海上特别是深水钻井作业井筒温度压力准确预测是保证钻井作业安全以及钻井/钻井液设计与评估的重要参数。由于海水和地层双重影响井筒温度变化较大,而钻井液物性(密度、流变性等)受井筒流动传热的影响较大,同样钻井液物性的改变反过来也会影响井筒温度压力的准确预测,如果钻井液参数视为常数,按照地面条件下钻井液物性预测井底压力和温度则其精度难以保证,在钻井液密度敞口非常小的地层,可能会产生井漏、溢流等井下复杂或事故。本文分别对深井水基钻井液的密度、黏度等物性参数预测模型进行了优选,建立了深井钻井井筒流动传热模型预测井筒压力温度,并分析了工艺参数对井底压力温度的影响。本研究为准确井底压力温度、预防钻井复杂事故,保障海上深水安全高效钻井具有较高的指导价值。  相似文献   

10.
准确地了解钻井过程中井筒及周围地层的温度变化对于安全、高效钻进具有重要的意义。针对钻井
过程中钻头持续破岩而导致的温度动态变化,基于热力学第一定律和热传导理论,建立考虑移动边界的井筒动态
温度计算模型,并通过现场试验进行了验证。研究结果表明,以往恒定井深的井筒循环温度模型会使计算结果偏
小,考虑井深的变化和钻头附近的轴向传热使得井底循环温度的计算结果更接近于现场实际。该模型为准确地了
解和预测井筒温度变化规律提供理论参考。  相似文献   

11.
气液两相流循环温度和压力预测耦合模型   总被引:1,自引:0,他引:1  
为保证欠平衡钻井安全钻进,需要给欠平衡钻井设计提供井筒温度和压力分布等基础数据。基于气液两相流钻井液循环时的流动特征和井筒与地层的传热机理,建立了适用于欠平衡钻井预测气液两相流钻井液循环温度和压力的耦合模型,给出了模型的离散方法和求解方法。在模型的求解过程中,考虑了温度和压力对气相(空气、氮气)的密度、比热、比焓、动力黏度、热导率等热物性参数的影响及热源对气液两相流钻井液温度场的影响,保证了气液两相流循环温度和压力的计算精度。基于大庆油田升深2-17井充氮气欠平衡钻井试验数据,利用气液两相流钻井液循环温度和压力预测耦合模型对欠平衡钻井时的井底温度和压力进行了计算,计算结果与实测结果吻合程度高,验证了模型的有效性。对比分析了以地温、地面温度作为气液两相钻井液温度和考虑井筒换热3种情况下的环空压力剖面特征,为欠平衡钻井设计及控压钻井设计和施工提供了理论基础和技术支持。  相似文献   

12.
深水高温高压井具有井筒温度场变化复杂、钻井液物性变化大等特点,导致钻井液当量循环密度(ECD)难以准确预测。为此,根据南海某研究区深水高温高压井钻井资料,通过PVT测量仪和旋转黏度计研究了深水水基钻井液当量静态密度、流变参数与温度、压力之间的响应特征,并根据实验数据拟合经验模型参数,同时考虑温度和压力对钻井液物性参数的影响、海底增压对井筒流场与温度场的影响,对深水高温高压井ECD计算模型进行完善。研究表明:高温高压环境对水基钻井液物性有较大影响,海底增压泵排量越高,井筒内ECD越高。利用模型对南海ST362-1d井进行实例计算,ECD模型预测值与实测值平均误差仅为0.249%。该研究结果对深水高温高压井水力参数优化设计及井筒压力控制具有一定的参考价值。  相似文献   

13.
现有基于机械比能理论的钻头磨损监测方法,都是通过机械比能趋势线对钻头钝化趋势作定性分析,没有一种定量计算钻头磨损等级的有效方法。在前人研究成果的基础上,选取合理机械比能模型,通过优化钻头扭矩回归数据对其进行了优化;综合考虑钻头设计参数、切削结构、钻井参数及钻头磨损等的影响,选取了合适的牙轮钻头和PDC钻头钻速方程,提出了一种定量计算与定性分析相结合的钻头磨损监测新方法。该方法充分考虑了钻速、钻压、转速、扭矩以及钻头设计参数等因素,采用钻速方程和测录井数据计算机械比能、岩石抗压强度和钻头磨损等级分级系数。该方法在南海油田宝岛区块A井、准噶尔盆地风城区块B井、吐哈油田某区块C井等的多个井段进行了PDC钻头和牙轮钻头的磨损监测,结果表明,较之钻头磨损实测数据,PDC钻头的平均相对误差为9.87%,牙轮钻头为21.15%,即新方法能有效监测钻头磨损情况且更适用于PDC钻头。   相似文献   

14.
钻井提速是各大石油钻井公司研究的重要方向,油气钻井工程实践表明,提高井底钻头喷嘴射流压力可以大幅提高钻井速度。在分析现有井下增压的基础上,研制了井下螺杆增压装置。该装置以螺杆泵作为动力,通过新型换向机构将旋转运动转换为增压泵的往复运动,成功实现了井底增压;钻头超高压喷嘴射流压力达到80~100MPa,有效地实现了超高压射流钻井,达到了提高钻速、降低钻井成本的目的。  相似文献   

15.
井底环空压力与地层压力的平衡关系是影响钻井作业安全的重要因素。由于井下工况复杂多变,而目前通过水力模型理论计算所得的井底压力与实际压力值存在较大的误差。文中介绍了一种可以测量近钻头处钻压、扭矩、环空压力、环空温度及钻柱内压力等参数并将测量数据实时传输至地面的随钻压力测量系统(PWD)。依靠PWD的实时测量数据,可以实时修正井筒水力模型,解释井底工况,预测钻井事故。现场试验证明,该测量系统测量参数准确、工作稳定可靠。通过与存储式PWD测量数值对比,该测量系统有较高的测量精度,具有实时传输测量数据功能,可为钻井作业提供有力的技术支持。  相似文献   

16.
无隔水管钻井技术通过控制海底钻井液举升泵的转速和流量来控制旋转防喷器内的钻井液液面,进而达到控制井筒压力的目的.针对深水无隔水管钻井系统作业过程中钻井平台的运动响应对井下钻井液压力扰动的问题,建立了钻井平台-升沉补偿-钻柱纵向振动耦合模型和井下钻井液压力计算模型,分析了海洋环境因素对平台运动响应、钻柱升沉运动响应及井底...  相似文献   

17.
目的钻井液温度对钻具进给和导向工具的选择具有重要意义,为了有效指导深层页岩气水平钻井过程,获得准确的钻井过程全井段温度分布,进行了深层钻井温度场研究。 方法基于能量守恒和热阻法建立了井筒流动传热模型,采用有限差分方式,计算获得钻井过程全井段温度剖面,准确预测了钻井过程钻井液温度场,误差在5%以内。分析了钻井液流量、入口温度和循环时间对井筒温度场分布的影响规律。 结果循环钻井液整体温度随循环时间的增加而下降;提高钻井液循环流量可有效降低井筒内温度,流量由8 t/h提升至16 t/h,井底温度降低10 ℃;钻井液入口温度对深层钻井的长水平段影响较低,入口温度变化20 ℃,井底温度仅改变3 ℃。 结论采用延长循环时间和增加循环钻井液流量的方法可以显著提升钻井过程的冷却效果。   相似文献   

18.
井内温度直接影响钻井液密度和井内压力。随钻井深度的增加,有必要对温度参数进行研究。考虑钻柱内和环空内流体与地层之间的热交换,建立井下循环温度物理模型,再根据能量守恒原理,利用半瞬态传热近似解法,推导出钻井液循环期间,钻柱内和环空内液瞬态温度预测模型。结合实例井参数,利用VB语言编写程序计算知,钻井液最高循环温度约出现在井底上方环空的1/8井深处,且基于该温度模型计算得到的YB井和MS1井井底当量静态密度(ESD)值分别为1.645g/cm3和1.918g/cm3,与现场测得数据吻合良好,说明该温度模型可用于预测井内瞬态温度。  相似文献   

19.
海洋深水油气井钻井过程中,现有的井筒循环温度场计算模型虽然综合考虑了钻井液在循环过程中诸如海水对流换热、隔水管及钻井液、地层导热等多种因素对井筒温度的影响,但却忽略了钻进导致的温度差异,与实际情况不符。为了给深水钻井的钻井液密度设计、井壁稳定性分析等相关工作提供更加准确可靠的依据,在不钻进只循环钻井液过程的温度模型求解温度场的基础上,对补充钻进工况的计算模型应用有限差分法和高斯迭代法进行求解,进而通过节点更新的算法,分析了不同机械钻速的钻进过程对深水钻井井筒温度纵向变化规律的影响。研究结果表明:①同一深度,不同机械钻速下全井温度场的计算结果有明显差异,1 000 m水深的井底随钻温度差异接近10℃;②钻进过程的循环温度场对时间的敏感性远高于机械钻速,与不考虑机械钻速的井筒温度场相比,考虑机械钻速情况下的井筒温度场呈整体增大的变化规律。结论认为,利用该方法可以更好地分析海洋深水钻井过程中井壁稳定性和管柱工况等实际问题,其结果更加符合生产实际。  相似文献   

20.
准确的预测钻井液循环温度对钻井作业安全、快速钻进具有十分重要意义。文章根据热力学第一定律及传热学的基本原理,考虑了钻井液传热受流动影响,建立了钻井液与地层之间的二维非稳态循环温度数学模型,模型通过优选钻井液流变模式,精确计算钻井液流变参数,并采用无条件稳定的全隐式有限差分法求得模型的数值解,提高了预测精度。最后用现场实测数据与模型计算数据进行了对比分析,验证了该模型的可行性和准确性。该模型可用于计算实际循环条件下的管柱内钻井液、管壁、环空钻井液与地层的温度分布,为准确预测钻井安全密度窗口和钻井液设计提供基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号